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Pixel classification

We consider:

I n0, n1 ∈ N called the height and width of a digital image,
V = [n0]× [n1] called the set of pixels, and the grid graph
G = (V,E)

I A non-empty set R whose elements are called colors

I A function x : V → R called a digital image

The task of pixel classification is concerned with making decisions at the
pixels, e.g., decisions y : V → {0, 1} indicating whether a pixel v ∈ V is of
interest (yv = 1) or not of interest (yv = 0).
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Pixel classification

Source: https://www.pexels.com/photo/nature-flowers-garden-plant-67857/

For instance, we may wish to map to 1 precisely those pixels of the above
image that depict the yellow part of any of the flowers.

https://www.pexels.com/photo/nature-flowers-garden-plant-67857/
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Pixel classification

We begin with a trivial mathematical abstraction of the task of pixel
classification:

Definition. For any c : V → R, the instance of the trivial pixel
classification problem w.r.t. c has the form

min
y∈{0,1}V

∑
v∈V

cv yv (1)

In practice, we would seek to construct the function c w.r.t. the image in
such a way that

I cv < 0 if we consider yv = 1 the right decision

I cv > 0 if we consider yv = 0 the right decision
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Pixel classification

Assuming the decision for a pixel v ∈ V depends on the color xv ∈ R of
that pixel only, we can

I construct a function ξ : R→ R
I define cv = ξ(xv) for any v ∈ V .

In some practical applications, e.g. photo editing, a suitable function ξ can
be constructed manually, typically with the help of carefully designed GUIs.
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Pixel classification

Assuming the decision for a pixel v ∈ V depends on the location v and on
the colors of all pixels in a neighborhood Vd(v) ⊆ V around v, e.g.

Vd(v) = {w ∈ V | ‖v − w‖max ≤ d} ,

we can

I construct, for any pixel v, a function ξv : R
Vd(v) → R that assigns a

real number ξv(x
′) to any coloring x′ : Vd(v)→ R of the

d-neighborhood of v

I define cv = ξ(xVd(v)) for any v ∈ V .

The task of constructing such functions ξv is typically addressed by means
of machine learning, e.g., logistic regression or a CNN.
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Pixel classification

In practice, solutions to the trivial pixel classification problem can be
improved by exploiting prior knowledge about feasible combinations of
decisions.

Firstly, we consider prior knowledge saying that decisions at neighboring
pixels v, w ∈ V are more likely to be equal (yv = vw) than unequal
(yv 6= yw).

Definition. For any c : V → R and any c′ : E → R+
0 , the instance of the

smooth pixel classification problem w.r.t. c and c′ has the form

min
y∈{0,1}V

∑
v∈V

cv yv +
∑

{v,w}∈E

c′{v,w} |yv − yw|︸ ︷︷ ︸
ϕ(y)

(2)
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Pixel classification

A näıve algorithm for this problem is local search with a transformation
Tv : {0, 1}V → {0, 1}V that changes the decision for a single pixel, i.e., for
any y : V → {0, 1} and any v, w ∈ V :

Tv(y)(w) =

{
1− yw if w = v

yw otherwise
.

Initially, y : V → {0, 1} and W = V
while W 6= ∅

W ′ := ∅
for each v ∈W

if ϕ(Tv(y))− ϕ(y) < 0
y := Tv(y)
W ′ :=W ′ ∪ {w ∈ V | {v, w} ∈ E}

W :=W ′



9/23

Pixel classification

I So far, we have studied a local search algorithm for the smooth pixel
classification problem.

I On the one hand, this algorithm is easy to implement and has
straight-forward generalizations, e.g., to the case of more than two
classes.

I On the other hand, it does not necessarily solve smooth pixel
classification with two classes to optimality.

I Next, we will reduce the smooth pixel classification problem with two
classes to the well-known minimum st-cut problem that can be
solved exactly and efficiently.

I The notes are organized as follows
I Definition of the minimum st-cut problem
I Submodularity
I Reduction of the smooth pixel classification problem
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Pixel classification

Definition 1

A 5-tuple N = (V,E, s, t, γ) is called a network iff (V,E) is a directed
graph and s ∈ V and t ∈ V and s 6= t and γ : E → R+

0 .

The nodes s and t are called the source and the sink of N , respectively.

For any edge e ∈ E, γe is called the capacity of e in N .
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Pixel classification

Definition 2

Let (V,E) be a directed graph. Let s ∈ V and t ∈ V and s 6= t.

I X ⊆ V is called an st-cutset of (V,E) iff s ∈ X and t /∈ X.

I Y ⊆ E is called an st-cut of (V,E) iff there exists an st-cutset X
such that Y = {vw ∈ E | v ∈ X ∧ w /∈ X}.
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Pixel classification

Definition 3

The instance of the Minimum st-Cut Problem w.r.t. a network
N = (V,E, s, t, γ) is to

min
x∈{0,1}V

∑
vw∈E

xv (1− xw) γvw (3)

subject to xs = 1 (4)

xt = 0 (5)
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Pixel classification

Definition 4

A lattice (S,�) is a set S, equipped with a partial order �, such that any
two elements of S have an infimum and a supremum w.r.t. �.

Example. ({0, 1}2,�) with � := {(s, t) ∈ S × S | s1 ≤ t1 ∧ s2 ≤ t2}.

(0, 0)

(1, 0) (0, 1)

(1, 1)

For any s, t ∈ {0, 1}2,

sup(s, t) = (max{s1, t1},max{s2, t2})
inf(s, t) = (min{s1, t1},min{s2, t2})
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Pixel classification

Definition 5

A function f : S → R is called submodular w.r.t. a lattice (S,�) iff

∀s, t ∈ S f(inf(s, t)) + f(sup(s, t)) ≤ f(s) + f(t) . (6)
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Pixel classification

Lemma 6

For any f : {0, 1}2 → R, the following statements are equivalent.

1. f is is submodular w.r.t. the the lattice ({0, 1}2,�)
2. f(0, 0) + f(1, 1) ≤ f(1, 0) + f(0, 1)

3. The unique form

c∅ + c{1}x1 + c{2}x2 + c{1,2}x1x2

of f is such that c{1,2} ≤ 0.
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Pixel classification

Proof.

I f(0, 0) + f(1, 1) ≤ f(1, 0) + f(0, 1) is the only condition in

∀s, t ∈ S f(inf(s, t)) + f(sup(s, t)) ≤ f(s) + f(t)

which is not generally true. Thus, (1.) is equivalent to (2.).

I We have

f(0, 0) = c∅

f(1, 0) = c∅ + c{1}

f(0, 1) = c∅ + c{2}

f(1, 1) = c∅ + c{1} + c{2} + c{1,2} .

Therefore,

c{1,2} = f(1, 1)− f(1, 0)− f(0, 1) + f(0, 0)

and thus, (2.) is equivalent to (3.).
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Pixel classification

Lemma 7

The sum of finitely many submodular functions is submodular.
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Pixel classification

Lemma 8

For every f : {0, 1}2 → R, there exist unique a0 ∈ R and
a1, a1̄, a2, a2̄, a12, a1̄2 ∈ R+

0 such that

a1a1̄ = a2a2̄ = a12a1̄2 = 0 (7)

and

∀x ∈ {0, 1}2 f(x) = a0

+ a1x1 + a1̄(1− x1)

+ a2x2 + a2̄(1− x2)

+ a12x1x2 + a1̄2(1− x1)x2 . (8)
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Pixel classification

Proof.

I Comparison of (8) with the unique form

c∅ + c{1}x1 + c{2}x2 + c{1,2}x1x2

yields

a0 + a1̄ + a2̄ = c∅

a1 − a1̄ = c{1}

a2 − a2̄ + a1̄2 = c{2}

a12 − a1̄2 = c{1,2} (9)

I By these equations (from bottom to top), (7) and c define a uniquely.



20/23

Pixel classification

Lemma 9 (Kolmogorov and Zabih)

For every submodular f : {0, 1}2 → R and its unique coefficient a0 ∈ R
from Lemma 8,

min
x∈{0,1}2

fx − a0 (10)

is equal to the weight of a minimum st-cut in the graph below whose
edge weights are the (unique, non-negative) coefficients from Lemma 8.

t

1 2

s

a1̄ a2̄

a1 a2

a1̄2

Moreover, f is minimal at x̂ ∈ {0, 1}2 iff {j ∈ {1, 2} | x̂j = 0} is a
minimum st-cutset of the above graph.
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Pixel classification

Proof.

I Submodularity of f implies a12 = 0 in (9), by Lemma 6 and (7).

I Comparison of the four possible minima of f ,

f(0, 0) = a0 + a1̄ + a2̄

f(1, 0) = a0 + a1 + a2̄

f(0, 1) = a0 + a1̄ + a2 + a1̄2

f(1, 1) = a0 + a1 + a2 + a12 ,

with the four possible minimum cuts below proves the Lemma.
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Pixel classification

Definition 10

For any smooth pixel classification problem

min
y∈{0,1}V

∑
v∈V

cv yv +
∑

{v,w}∈E

c′{v,w} |yv − yw|︸ ︷︷ ︸
ϕ(y)

(11)

the induced minimum st-cut problem is defined by the network
(V ′, E′, s, t, γ) such that V ′ = V ∪ {s, t},

E′ ={(s, v) ∈ V ′2 | cv > 0} ∪ {(v, t) ∈ V ′2 | cv < 0}
∪ {(v, w) ∈ V ′2 | {v, w} ∈ E} (12)

and γ : E′ → R+
0 such that

∀(s, v) ∈ E′ : γ(s,v) = cv (13)

∀(v, t) ∈ E′ : γ(v,t) = −cv (14)

∀{v, w} ∈ E : γ(v,w) = γ(w,v) = c′{v,w} . (15)
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Pixel classification

Lemma 11

For any smooth pixel classification problem w.r.t. a pixel grid graph
G = (V,E) and the induced minimum st-cut problem with the network
(V ′, E′, s, t, γ), ŷ : V → {0, 1} is an optimal pixel classification iff
{v ∈ V | ŷv = 0} is an optimal st-cutset.

Proof (sketch). The function ϕ is submodular, by Lemma 7 and c′ > 0.
The statement holds by Lemma 8 and the fact that for all y ∈ {0, 1}V :

ϕ(y) =
∑
v∈V

cv yv +
∑

{v,w}∈E

c′{v,w} (yv(1− yw) + (1− yv)yw) .


