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Image decomposition

I So far, we have studied pixel classification, a problem whose
feasible solutions define decisions at the pixels of an image

I Next, we will study image decomposition, a problem whose
feasible solutions decide whether pairs of pixels are assigned to the
same or distinct components of the image

I Image decomposition has applications where components of the
image are indistinguishable by appearance (see next slide)



Image decomposition

7→

Volume Image (32 nm/voxel) Decomposition
(Denk and Horstmann, 2004) (Andres et al., 2012)



Image decomposition

Decomposition of a graph G = (V,E)

I A mathematical abstraction of a decomposition of an image is a
decomposition of the pixel grid graph.

I A decomposition of a graph is a partition of the node set into
connected subsets (one example is depicted above in gray).
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Decomposition of a graph G = (V,E)

I A decomposition of a graph is characterized by the set of edges that
straddle distinct components (depicted above as dotted lines)

I Those subsets of edges are called multicuts of the graph
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intersects with the multicut in precisely one edge
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Image decomposition

Multicut of a graph G = (V,E)

multicuts(G) := {M ⊆ E | ∀C ∈ cycles(G) : |M ∩ C| 6= 1}
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Multicut of a graph G = (V,E)



Image decomposition

Multicut of a graph G = (V,E)

I The characteristic function y : E → {0, 1} of a multicut y−1(1) can
be used to encode the decomposition induced by the multicut in an
|E|-dimensional 01-vector

I For any e ∈ E, ye = 1 indicates that an edge is cut, straddling
distinct components



Image decomposition

Multicut of a graph G = (V,E)

I The set of the characteristic functions of all multicuts of G:

YG :=

y : E → {0, 1}

∣∣∣∣∣∣ ∀C ∈ cycles(G)∀e ∈ C : ye ≤
∑

f∈C\{e}

yf





Image decomposition

Graph G = (V,E)

I An instance of the image decomposition problem is given by a graph
G = (V,E) and, for every edge e = {v, w} ∈ E, a (positive or
negative) cost ce ∈ R that is payed iff the incident pixels v and w
are put in distinct components

I Such costs are often estimated from examples using machine
learning technqiues
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Graph G = (V,E). Edge costs c : E → R

I An instance of the image decomposition problem is given by a graph
G = (V,E) and, for every edge e = {v, w} ∈ E, a (positive or
negative) cost ce ∈ R that is payed iff the incident pixels v and w
are put in distinct components

I Such costs are often estimated from examples using machine
learning technqiues
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Graph G = (V,E). Edge costs c : E → R

I Image decomposition problem:

min
y∈YG

∑
e∈E

ce ye

I The optimal solution is shown in the next slide
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Graph G = (V,E). Edge costs c : E → R



Image decomposition

I One technique for finding feasible solutions to an image
decomposition problem is local search.

I Starting from the finest decomposition into singleton components
(depicted above), we greedily join neighboring components as long
as this improves the cost (see next slide).



Image decomposition

I Once no joining of neighboring components further reduces the cost,
we consider all pairs of neighboring components (depicted in green)
and all nodes at the shared boundary (depicted in black) and all
possibilities of moving nodes from one component to the other.

I The procedure is iterated until no such transformation further
reduces the cost
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Joint pixel classification and image decomposition

I So far, we have studied
I pixel classification, a problem whose feasible solutions define

decisions at the pixels of an image
I image decomposition, a problem whose feasible solutions decide

whether pairs of pixels are assigned to the same or distinct
components of the image.

I Applications exists (as we will see) for which both problems are too
restrictive:
I In pixel classification, there is no way of assigning neighboring pixels

of the same class to distinct components of the image.
I In image decomposition, there is no way of expressing that a unique

decision shall be made for pixels that belong to the same component
of the image.



M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and
B. Schiele. The Cityscapes Dataset for Semantic Urban Scene Understanding. CVPR 2016. See
also: https://www.cityscapes-dataset.com/

I One application where a joint generalization of pixel classification
and image decomposition is useful is called semantic image
segmentation.

I In the above image, thin boundaries are left between pixels of the
same class (e.g. pedestrian) that belong to different instances of the
class (e.g. distinct pedestrians).

I Next, we are going to introduce a strict generalization of both, pixel
classification and image decomposition that does not require these
boundaries.



Graph Decomposition Node Labeling

We state an optimization problem whose feasible solutions define both, a
decomposition of a graph G = (V,E) and a labeling l : V → L of its
nodes.



Graph Decomposition Node Labeling

We encode every feasible node labeling in a binary vector from the set

YV L :=

{
y : V × L→ {0, 1}

∣∣∣∣∣∀v ∈ V :
∑
l∈L

yvl = 1

}



Graph Decomposition Node Labeling



Graph Decomposition Node Labeling

We encode every feasible graph decomposition by the characteristic
function of the multicut it induces:

XG :=

x : E → {0, 1}

∣∣∣∣∣∣∀C ∈ cycles(G)∀e ∈ C : xe ≤
∑

f∈C\{e}

xf





Graph Decomposition Node Labeling

We choose an arbitrary orientation (V,A) of the edges E, i.e., for each
v, w ∈ V , we have {v, w} ∈ E if and only if either (v, w) ∈ A or
(w, v) ∈ A.



Graph Decomposition Node Labeling

W.r.t. the orientation (V,A) of the graph G = (V,E), the set L of
labels, any (costs) c : V × L→ R and any (costs) c′, c′′ : A× L2 → R,
the instance of the joint graph decomposition and node labeling problem
has the form

min
(x,y)∈XG×YV L

∑
v∈V

∑
l∈L

cvl yvl +
∑

(v,w)∈A

∑
(l,l′)∈L2

c′vwll′ yvl ywl′ x{v,w}

+
∑

(v,w)∈A

∑
(l,l′)∈L2

c′′vwll′ yvl ywl′ (1− x{v,w})


