# Computer Vision I 

Bjoern Andres, Holger Heidrich

TU Dresden



Winter Term 2021/2022

## Object recognition

Object recognition is the task of finding any occurrences of an object in an image, given a model of the the geometry and appearance of the object.

Object recognition


Object recognition


## Object recognition



Set $D$ of points in the image


- $\epsilon$ (not part of the object)

Set $V$ of object key points

Object recognition


## Object recognition

## Decisions at points

- For any point $d \in D$ in the image and any key point $v \in V$ of the object, let $y_{d v} \in\{0,1\}$ indicate whether the point $d$ is an occurrence of the key point $v$ in the image
- We constrain each point in the image to be an occurrence of precisely one key point, possibly $\epsilon$. Hence, we consider the feasible set

$$
Y_{D V}=\left\{y: D \times V \rightarrow\{0,1\} \mid \forall d \in D: \sum_{v \in V} y_{d v}=1\right\}
$$

Costs at points

- For any point $d \in D$ and any key point $v \in V$, let $c_{d v} \in \mathbb{R}$ a cost associated with the decision $y_{d v}=1$
- This cost typically depends on the contents of the image at the point $d$.


## Object recognition

## Decisions for pairs of points

- For any pair $\left\{d, d^{\prime}\right\} \in\binom{D}{2}$ of points, let $x_{\left\{d, d^{\prime}\right\}} \in\{0,1\}$ indicate whether $d$ and $d^{\prime}$ belong to the same occurrence of an object in the image
- We require these decisions to be transitive, i.e.

$$
\begin{align*}
\forall d \in D \forall d^{\prime} \in D \backslash\{d\} \forall d^{\prime \prime} & \in D \backslash\left\{d, d^{\prime}\right\}: \\
& x_{\left\{d, d^{\prime}\right\}}+x_{\left\{d^{\prime}, d^{\prime \prime}\right\}}-1 \leq x_{\left\{d, d^{\prime \prime}\right\}} \tag{1}
\end{align*}
$$

Hence, we consider the feasible set

$$
X_{D}=\left\{x: \left.\binom{D}{2} \rightarrow\{0,1\} \right\rvert\,(1)\right\}
$$

## Object recognition

## Costs for pairs of points

- For any pair $\left(d, d^{\prime}\right) \in D^{2}$ of points such that $d \neq d^{\prime}$ and any pair $(v, w) \in V^{2}$ of key points, let
- $c_{d d^{\prime} v w}^{\prime} \in \mathbb{R}$ a cost associated with the decision $y_{d v} y_{d^{\prime} w} x_{\left\{d, d^{\prime}\right\}}=1$
- $c_{d d^{\prime} v w}^{\prime \prime} \in \mathbb{R}$ a cost associated with the decision
$y_{d v} y_{d^{\prime} w}\left(1-x_{\left\{d, d^{\prime}\right\}}\right)=1$
- These costs can depend, e.g., on the distance between $d$ and $d^{\prime}$ in the image plane.

Object recognition

## Optimization problem

- The task of object recognition can now be stated as the optimization problem

$$
\begin{aligned}
\min _{(x, y) \in X_{D} \times Y_{D V}} & \sum_{d \in D} \sum_{v \in V} c_{d v} y_{d v} \\
& +\sum_{d \in D} \sum_{d^{\prime} \in D \backslash\{d\}} \sum_{(v, w) \in V^{2}} c_{d d^{\prime} v w}^{\prime} y_{d v} y_{d^{\prime} w} x_{\left\{d, d^{\prime}\right\}} \\
& +\sum_{d \in D} \sum_{d^{\prime} \in D \backslash\{d\}} \sum_{(v, w) \in V^{2}} c_{d d^{\prime} v w}^{\prime \prime} y_{d v} y_{d^{\prime} w}\left(1-x_{\left\{d, d^{\prime}\right\}}\right)
\end{aligned}
$$

- This is a joint graph decomposition and node labeling problem
- The local search algorithm we have considered before (for the task of joint image decomposition and pixel labeling) can be applied!

Object recognition


