Machine Learning I

Bjoern Andres (Lectures)
Shengxian Zhao and Jérome Thiessat (Exercises)

Machine Learning for Computer Vision TU Dresden

Winter Term 2021/2022

Welcome

- ► Online course consisting of
 - ► Live video lectures with Q&A on Fridays, 14:50–16:20
 - ► Live discussion of assignments with Q&A, from October 25th:
 - ► Mondays, 11:10–12:40
 - ► Mondays, 16:40–18:10
 - ► Thursdays, 14:50–16:20
 - Assignments, self-study and moderated discussion in a forum
- ► Course website:

https://mlcv.inf.tu-dresden.de/courses/21-winter/ml1/index.html

- ► All students need to register via **OPAL**. All students of the study program CMS need to register additionally via **SELMA**.
- ► Contents of the exercises will be part of the examination
- ► Textbooks:
 - ► Barber, Bayesian Reasoning and Machine Learning
 - ▶ Bishop, Pattern Recognition and Machine Learning
 - ► Shai, Understanding Machine Learning

Machine Learning

Machine Learning is a branch of computer science and a scientific community that *studies* and *develops* mathematical models and algorithms for understanding and interpreting data, as well as for deciding and acting wrt. data.

- ► Poses challenging problems
- ► Combines insights and methods from
 - ► Mathematics (esp. optimization, probability theory, statistics)
 - ► Computer Science (esp. algorithms, complexity, software engineering)
- ▶ Provides an opportunity for applying analytical and engineering skills
- ► Has impact on applications (medical, robotic, consumer)
- ► Grows dynamically
 - Excellent career opportunities (start-up companies, established corporations, public sector)

Machine Learning

Machine Learning is a branch of computer science and a scientific community that *studies* and *develops* mathematical models and algorithms for understanding and interpreting data, as well as for deciding and acting wrt. data.

- ► Leading scholarly journal:
 - ► Journal of Machine Learning Research (JMLR)
- ► Leading academic conferences:
 - ► International Conference on Machine Learning (ICML)
 - ► Neural Information Processing Systems (NeurIPS)
 - ► International Conference on Learning Representations (ICLR)
- ► Closely related scientific communities:
 - ► Learning theory (e.g. ALT, COLT)
 - ► Artificial Intelligence (e.g. IJCAI, AAAI, UAI, AISTATS)

Contents

- ► Supervised learning
 - ► Disjunctive normal forms
 - ► Binary decision trees
 - ► Linear functions
 - ► Artificial neural networks
- ► Semi-supervised and unsupervised learning
 - Partitioning
 - ► Clustering
 - Ordering
- ► Structured learning
 - ► Conditional graphical models
- **▶** Density estimation
- Embedding
- Applications

Prerequisites

- ▶ Mathematics
 - ► Linear algebra
 - ► Multivariate calculus (basics)
 - ► Probability theory (basics)
- ► Computer Science
 - ► Algorithms and data structures (basics)
 - ► Theoretical computer science (basics of complexity theory)

▶ We write "iff" as shorthand for "if and only if".

- ▶ We write "iff" as shorthand for "if and only if".
- ightharpoonup For any finite set A, we denote by |A| the number of elements of A.

- ▶ We write "iff" as shorthand for "if and only if".
- lacktriangle For any finite set A, we denote by |A| the number of elements of A.
- ▶ For any set A, we denote by 2^A the power set of A.

- ► We write "iff" as shorthand for "if and only if".
- lacktriangle For any finite set A, we denote by |A| the number of elements of A.
- \blacktriangleright For any set A, we denote by 2^A the power set of A.
- ▶ For any set A and any $m \in \mathbb{N}$, we denote by $\binom{A}{m}$ the set of all m-elementary subsets of A, i.e. $\binom{A}{m} = \{B \in 2^A \colon |B| = m\}$.

- ► We write "iff" as shorthand for "if and only if".
- lacktriangle For any finite set A, we denote by |A| the number of elements of A.
- ▶ For any set A, we denote by 2^A the power set of A.
- ► For any set A and any $m \in \mathbb{N}$, we denote by $\binom{A}{m}$ the set of all m-elementary subsets of A, i.e. $\binom{A}{m} = \{B \in 2^A : |B| = m\}$.
- \blacktriangleright For any sets A,B, we denote by B^A the set of all maps from A to B

- ► We write "iff" as shorthand for "if and only if".
- lacktriangle For any finite set A, we denote by |A| the number of elements of A.
- For any set A, we denote by 2^A the power set of A.
- ▶ For any set A and any $m \in \mathbb{N}$, we denote by $\binom{A}{m}$ the set of all m-elementary subsets of A, i.e. $\binom{A}{m} = \{B \in 2^A : |B| = m\}$.
- lacktriangle For any sets A,B, we denote by B^A the set of all maps from A to B
- For any map $f \in B^A$, any $a \in A$ and any $b \in B$, we may write b = f(a) or $b = f_a$ instead of $(a,b) \in f$

- ► We write "iff" as shorthand for "if and only if".
- lacktriangle For any finite set A, we denote by |A| the number of elements of A.
- For any set A, we denote by 2^A the power set of A.
- For any set A and any $m \in \mathbb{N}$, we denote by $\binom{A}{m}$ the set of all m-elementary subsets of A, i.e. $\binom{A}{m} = \{B \in 2^A : |B| = m\}$.
- lacktriangle For any sets A,B, we denote by B^A the set of all maps from A to B
- For any map $f \in B^A$, any $a \in A$ and any $b \in B$, we may write b = f(a) or $b = f_a$ instead of $(a,b) \in f$
- ▶ Given any set J and, for any $j \in J$, a set S_j , we denote by $\prod_{j \in J} S_j$ the Cartesian product of the family $\{S_j\}_{j \in J}$, i.e.

$$\prod_{j \in J} S_j = \left\{ f \colon J \to \bigcup_{j \in J} S_j \,\middle|\, \forall j \in J \colon f(j) \in S_j \right\} \tag{1}$$

- ► We write "iff" as shorthand for "if and only if".
- ightharpoonup For any finite set A, we denote by |A| the number of elements of A.
- For any set A, we denote by 2^A the power set of A.
- ▶ For any set A and any $m \in \mathbb{N}$, we denote by $\binom{A}{m}$ the set of all m-elementary subsets of A, i.e. $\binom{A}{m} = \{B \in 2^A : |B| = m\}$.
- lacktriangle For any sets A,B, we denote by B^A the set of all maps from A to B
- For any map $f \in B^A$, any $a \in A$ and any $b \in B$, we may write b = f(a) or $b = f_a$ instead of $(a,b) \in f$
- ▶ Given any set J and, for any $j \in J$, a set S_j , we denote by $\prod_{j \in J} S_j$ the Cartesian product of the family $\{S_j\}_{j \in J}$, i.e.

$$\prod_{j \in J} S_j = \left\{ f \colon J \to \bigcup_{j \in J} S_j \,\middle|\, \forall j \in J \colon f(j) \in S_j \right\} \tag{1}$$

▶ We denote by $\langle \cdot, \cdot \rangle$ the standard inner product, and by $\| \cdot \|$ the l_2 -norm.

- ► We write "iff" as shorthand for "if and only if".
- ightharpoonup For any finite set A, we denote by |A| the number of elements of A.
- For any set A, we denote by 2^A the power set of A.
- For any set A and any $m \in \mathbb{N}$, we denote by $\binom{A}{m}$ the set of all m-elementary subsets of A, i.e. $\binom{A}{m} = \{B \in 2^A : |B| = m\}$.
- lacktriangle For any sets A,B, we denote by B^A the set of all maps from A to B
- For any map $f \in B^A$, any $a \in A$ and any $b \in B$, we may write b = f(a) or $b = f_a$ instead of $(a,b) \in f$
- ▶ Given any set J and, for any $j \in J$, a set S_j , we denote by $\prod_{j \in J} S_j$ the Cartesian product of the family $\{S_j\}_{j \in J}$, i.e.

$$\prod_{j \in J} S_j = \left\{ f \colon J \to \bigcup_{j \in J} S_j \,\middle|\, \forall j \in J \colon f(j) \in S_j \right\} \tag{1}$$

- ▶ We denote by $\langle \cdot, \cdot \rangle$ the standard inner product, and by $\| \cdot \|$ the l_2 -norm.
- For any $m \in \mathbb{N}$, we define $[m] = \{0, \dots, m-1\}$.