Machine Learning I

Bjoern Andres (Lectures)
Shengxian Zhao and Jérome Thiessat (Exercises)

Machine Learning for Computer Vision
TU Dresden

Winter Term 2021/2022

Supervised learning

Contents. This part of the course introduces the concept of labeled data and the supervised learning problem.

Supervised learning

Example: A medical test with $n \in \mathbb{N}$ design parameters $\theta \in \Theta=\mathbb{R}^{n}$ measures $m \in \mathbb{N}$ quantities and indicates by $y \in Y=\{0,1\}$ whether a measurement $x \in X=\mathbb{R}^{m}$ is considered to be healthy $(y=0)$ or pathological $(y=1)$.

$$
X \xrightarrow{g_{\theta}} Y
$$

Informally, supervised learning is the problem of finding, in a family $g: \Theta \rightarrow Y^{X}$ of functions, one function $g_{\theta}: X \rightarrow Y$ that minimizes a weighted sum of two objectives:

- g_{θ} deviates little from a finite set $\left\{\left(x_{s}, y_{s}\right)\right\}_{s \in S}$ of input-output-pairs, called labeled data
- g_{θ} has low complexity, as quantified by a function $R: \Theta \rightarrow \mathbb{R}_{0}^{+}$, called a regularizer

Supervised learning

Remarks:

- The family g defines a parameterization of functions from inputs X to outputs Y.
- g can be chosen so as to constrain the set of functions from X to Y in the first place.
- For instance, Θ can be a set of forms, g the functions defined by these forms, and R the length of these forms.

Supervised learning

- Given an additional finite set $\left\{\left(x_{s}, y_{s}\right)\right\}_{s \in S^{\prime}}$ of input-output-pairs and given a function $L: Y \times Y \rightarrow \mathbb{R}_{0}^{+}$, the loss of a learned function can be defined as

$$
\sum_{s \in S^{\prime}} L\left(g_{\theta}\left(x_{s}\right), y_{s}\right)
$$

For $Y=\{0,1\}$ and $L\left(y, y^{\prime}\right)=\left|y-y^{\prime}\right|$:

		Truth y_{s}	
	0	1	
Test $g_{\theta}\left(x_{s}\right)$	0	$L(0,0)$ (true negative)	$L(0,1)$ (false negative)
	1	$L(1,0)$ (false positive)	$L(1,1)$ (true positive)

Accuracy: $\frac{L(0,0)+L(1,1)}{\left|S^{\prime}\right|}$ Precision: $\frac{L(1,1)}{L(1,0)+L(1,1)}$
Error ratio: $\frac{L(0,1)+L(1,0)}{\left|S^{\prime}\right|} \quad$ Recall: $\frac{L(1,1)}{L(0,1)+L(1,1)}$

We concentrate exclusively on the special case where Y is finite.
To begin with, we even concentrate on the case where $Y=\{0,1\}$. Hence, we consider a family $g: \Theta \rightarrow\{0,1\}^{X}$.

We allow ourselves to take a detour by not optimizing over a family $g: \Theta \rightarrow\{0,1\}^{X}$ directly but instead optimizing over a family $f: \Theta \rightarrow \mathbb{R}^{X}$ and defining g w.r.t. f via a function $L: \mathbb{R} \times\{0,1\} \rightarrow \mathbb{R}_{0}^{+}$, called a loss function, such that

$$
\begin{equation*}
\forall \theta \in \Theta \forall x \in X: \quad g_{\theta}(x) \in \underset{\hat{u} \in\{0,1\}}{\operatorname{argmin}} L\left(f_{\theta}(x), \hat{y}\right) . \tag{1}
\end{equation*}
$$

Example: 0/1-loss

$$
\forall r \in \mathbb{R} \forall \hat{y} \in\{0,1\}: \quad L(r, \hat{y})=\left\{\begin{array}{ll}
0 & r=\hat{y} \tag{2}\\
1 & \text { otherwise }
\end{array} .\right.
$$

Next, we define the supervised learning problem rigorously.

Definition. For any finite, non-empty set S, called a set of samples, any $X \neq \emptyset$, called an attribute space and any $x: S \rightarrow X$, the tuple (S, X, x) is called unlabeled data.

For any $y: S \rightarrow\{0,1\}$, given in addition and called a labeling, the tuple (S, X, x, y) is called labeled data.

Definition. For any labeled data $T=(S, X, x, y)$, any $\Theta \neq \emptyset$ and $f: \Theta \rightarrow \mathbb{R}^{X}$, any $R: \Theta \rightarrow \mathbb{R}_{0}^{+}$, called a regularizer, any $L: \mathbb{R} \times\{0,1\} \rightarrow \mathbb{R}_{0}^{+}$, called a loss function, and any $\lambda \in \mathbb{R}_{0}^{+}$:

- The instance of the supervised learning problem w.r.t. T, Θ, f, R, L and λ is defined as

$$
\begin{equation*}
\inf _{\theta \in \Theta} \quad \lambda R(\theta)+\frac{1}{|S|} \sum_{s \in S} L\left(f_{\theta}\left(x_{s}\right), y_{s}\right) \tag{3}
\end{equation*}
$$

- The instance of the separation problem w.r.t. T, Θ, f and R is defined as

$$
\begin{align*}
\inf _{\theta \in \Theta} & R(\theta) \tag{4}\\
\text { subject to } & \forall s \in S: \quad f_{\theta}\left(x_{s}\right)=y_{s} \tag{5}
\end{align*}
$$

- The instance of the bounded separability problem w.r.t. T, Θ, f, R and $m \in \mathbb{N}$ is to decide whether there exists a $\theta \in \Theta$ such that

$$
\begin{array}{ll}
& R(\theta) \leq m \\
\forall s \in S: & f_{\theta}\left(x_{s}\right)=y_{s} \tag{7}
\end{array}
$$

Supervised learning

Definition. For any unlabeled data $T=(S, X, x)$, any $\hat{f}: X \rightarrow \mathbb{R}$ and any $L: \mathbb{R} \times\{0,1\} \rightarrow \mathbb{R}_{0}^{+}$, the instance of the inference problem w.r.t. T, \hat{f} and L is defined as

$$
\begin{equation*}
\min _{y^{\prime} \in\{0,1\}^{S}} \sum_{s \in S} L\left(\hat{f}\left(x_{s}\right), y_{s}^{\prime}\right) \tag{8}
\end{equation*}
$$

Supervised learning

Lemma. The solutions to the inference problem are the $y: S \rightarrow\{0,1\}$ such that

$$
\begin{equation*}
\forall s \in S: \quad y_{s} \in \underset{\hat{y} \in\{0,1\}}{\operatorname{argmin}} L\left(\hat{f}\left(x_{s}\right), \hat{y}\right) \tag{9}
\end{equation*}
$$

Moreover, if $\hat{f}(X) \subseteq\{0,1\}$ and L is the 01 -loss, then

$$
\begin{equation*}
\forall s \in S: \quad y_{s}^{\prime}=\hat{f}\left(x_{s}\right) . \tag{10}
\end{equation*}
$$

Summary. Supervised learning is an optimization problem. It consists in finding, in a family of functions, one function that minimizes a weighted sum of two objectives:

1. The function deviates little from given labeled data, as quantified by a loss function
2. The function has low complexity, as quantified by a regularizer.
