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Clustering

Contents.

» This part of the course is about the problem of decomposing
(clustering) a graph into components (clusters), without knowing
the number, size or any other property of the clusters.

» This generalizes the problem of partitioning a set. It specializes to the
latter for complete graphs.

» Analogously, the problem of decomposing a graph is introduced as an
unsupervised learning problem w.r.t. constrained data.
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Let G = (A, E) be any graph.

Definition.
» A subgraph G’ = (A’, E’) of G is called a component (cluster) of
G iff G' is non-empty, node-induced (i.e. E' = EN (%)) and
connected.

» A partition II of the node set A is called a decomposition
(clustering) of G iff, for every U € II, the subgraph (U, E N (})) of
G induced by U is connected (and thus a component of G).

» We denote by D¢ the set of all decompositions of G.
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Definition.
» A subset M C FE of edges is called a multicut of G iff, for every
cycle C C E of G, we have [CN M| # 1.
» We denote by Mg the set of all multicuts of G.

Lemma.

» For any decomposition of a graph G, the set of those edges that
straddle distinct components is a multicut of G. This multicut is said
to be induced by the decomposition.

» The map from decompositions to induced multicuts is a bijection
from Dg to Mg.
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Remarks:

» The characteristic function y: E — {0,1} of a multicut y~*(1)
decides, for every edge {a,b} = e € E, whether the incident nodes a
and b belong to the same component (y. = 0) or distinct components

(ye = 1)-
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Clustering

Remarks:

» The characteristic function y: E — {0,1} of a multicut y~*(1)
decides, for every edge {a,b} = e € E, whether the incident nodes a
and b belong to the same component (y. = 0) or distinct components
(ye = 1)-

» By the definition of a multicut, these decisions are not necessarily
independent.

Lemma. For any y: E — {0, 1}, the set y~ (1) of those edges that are
mapped to 1 is a multicut of G iff the following inequalities are satisfied:

VC € cycles(G) Vee C: gy, < Z Yo (1)
e’eC\{e}
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Clustering

Constrained Data

We reduce the problem of learning and inferring multicuts to the problem
of learning and inferring decisions, by defining constrained data
(S, X,2,Y) with

S=E (2)

Y=Sy:E—{0,1} |VC €cycles(G) Ve € C: y. <D yer o (3)
e'eC\{e}
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» We consider a finite, non-empty set V, called a set of attributes,
and the attribute space X = RY
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Familiy of functions

» We consider a finite, non-empty set V, called a set of attributes,
and the attribute space X = RY

» We consider linear functions. Specifically, we consider © = R" and
f:© — RX such that

VoeOVEeRY:  fo(d) = O, =(0.7) . (4)

veV
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veV

0, O

Xs

Y

seS

» For any {a,b} =s € S =EFE, let X, be a random variable whose
value is a vector 2, € RV, the attribute vector of s.

Random Variables

!
|

Z
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Random Variables

» For any {a,b} =s € S =EFE, let X, be a random variable whose
value is a vector 2, € RV, the attribute vector of s.

» For any s € S, let Y be a random variable whose value is a binary
number y, € {0, 1}, called the decision of joining {a, b} = s.
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Random Variables

» For any {a,b} =s € S =EFE, let X, be a random variable whose
value is a vector 2, € RV, the attribute vector of s.

» For any s € S, let Y be a random variable whose value is a binary
number y, € {0, 1}, called the decision of joining {a, b} = s.

» For any v € V, let ©, be a random variable whose value is a real
number 6, € R, a parameter of the function we seek to learn.
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Random Variables

For any {a,b} =s € S =E, let X, be a random variable whose
value is a vector 2, € RV, the attribute vector of s.

For any s € S, let Y, be a random variable whose value is a binary
number y, € {0, 1}, called the decision of joining {a, b} = s.

For any v € V, let ©, be a random variable whose value is a real
number 6, € R, a parameter of the function we seek to learn.

Let Z be a random variable whose value is a subset Z C {0, 1}
called the set of feasible decisions. For clustering, we are interested

in Z =), the set characterizing multicuts of G.
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veV

o

0, O '?Ys

seS

P(X,Y,Z,0) =

'
Oz

Factorization

seS

veV

P(Z|Y) [[P(vi| Xs,0) [[P(6n) [] P(X.

seS
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Factorization

» Supervised learning:

PO XY, Z)
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Factorization

» Supervised learning:

P(X,Y,Z,0)

P(X,Y,Z)

P(Z|Y)P(Y | X,0) P(X) P(©)
P(Z|X,Y)P(X,Y)

P(Z|Y)P(Y | X,0)P(X)P(©)
P(Z|Y)P(X,Y)

P(Y | X,0)P(X)P(©)
P(X,Y)

x P(Y | X,0) P(©)

=[] Pv. | x..0) [] P

seS veV

PO X,Y,Z) =
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Factorization

» Inference:

P(Y | X,Z.0)
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Factorization
» Inference:
_ PX,Y,Z,0)
PYIX. 2.9 =5 Z o)
_ P(Z]Y)P(Y | X,0) P(X) P(O)
- P(X,Z,0)

xP(Z|Y)P(Y | X,0)

=P(Z|Y) ][] P(Vs| X., ©)
seS

13/26



Clustering

Distributions

» Logistic distribution

1

vs€S: pvx.e) = 5 wmen

1, |
K
80.57 R
N
&

07 | | | | | ]
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Distributions

» Normal distribution with 0 € R*:

1 2 2
YveV.: (0,) = ——e /2 6
pev( U) O'\/% ( )
0.4 R
<
~ 0.2 R
@
Y
0L ! ! ! ! ! il
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Clustering

Distributions

» Uniform distribution on a subset

1 ifyez

VZ C {07 1}5 Vy € {07 1}5 pZ\Y(Zay) X .
0 otherwise

Note that pz|y (Y, y) is non-zero iff the labeling y: S — {0, 1}
defines an multicut of G.
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Clustering

Lemma. Estimating maximally probable parameters 6, given attributes x
and decisions y, i.e.,

argmax p@\X7Y7Z(97x7y7y)
OeRV

is an lo-regularized logistic regression problem.
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Lemma. Estimating maximally probable parameters 6, given attributes x
and decisions y, i.e.,

argmax p@\X7Y7Z(97x7y7y)
OeRV

is an lo-regularized logistic regression problem.

Proof. Analogous to the case of deciding, we obtain:

argmax pe|x,v,z(0,7,y,))

0ERV
loge
_ ~ e folzs) +1 (1 2f9(xs>)) 02 .
argmin Z( Ys fo(zs) +log (1+ + 5z 1013

ses
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Clustering

Lemma. Estimating maximally probable decisions y, given attributes =,
given the set of feasible decisions ), and given parameters 6, i.e.,

argmax  py|x,ze(y,z,Y,0) (7)
y€{0,1}%

assumes the form of the minimum cost multicut problem:

argmin (=0, ) Ye (8)

y: E—{0,1} eez;

subject to VC € cycles(G) Ve e C:  y. < Z Yer (9)
e’eC\{e}
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Lemma. Estimating maximally probable decisions y, given attributes =,
given the set of feasible decisions ), and given parameters 6, i.e.,

argmax  py|x,ze(y,z,Y,0) (7)
y€{0,1}%

assumes the form of the minimum cost multicut problem:

argmin (=0, ) Ye (8)

y: E—{0,1} eez;

subject to VC € cycles(G) Ve e C:  y. < Z Yer (9)
e’eC\{e}

Theorem. The minimum cost multicut problem is NP-hard.

Bansal et al. (2004) reduce this problem to the k terminal cut problem
whose NP-hardness is an important result Dahlhaus et al. (1994).
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We will generalize the three local search algorithms we have defined for
the set partition problem to the minimum cost multicut problem.
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We will generalize the three local search algorithms we have defined for
the set partition problem to the minimum cost multicut problem.

For simplicity, we define ¢ : E — R such that
VeeS: c.=—(0,z.) (10)

and write the (linear) cost function ¢ : {0,1}* — R such that

Vy € {071}E: @(y) = Zce Ye (11)
eckE
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Greedy joining algorithm:
» The greedy joining algorithm is a local search algorithm that starts
from any initial decomposition.
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Clustering

Greedy joining algorithm:
» The greedy joining algorithm is a local search algorithm that starts
from any initial decomposition.

» |t searches for decompositions with lower cost by joining pairs of
neighboring (!) components recursively.

» As components can only grow and the number of components
decreases by one in every step, one typically starts from the finest
decomposition Iy of A into one-elementary components.

20/26



Clustering

Definition. Let G = (A, E) be any graph.
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Definition. Let G = (A, E) be any graph.
» For any disjoint sets B, C C A, the pair {B, C} is called neighboring
in G iff there exist nodes b € B and ¢ € C such that {b,c} € E.

» For any decomposition IT of a graph G = (A, E), we define
& = {{B,C} 6 ’3176 Bce C: {bc) e E} . (12)
» For any decomposition II of G = (A, E) and any {B,C} € &q, let

joing[I] be the decomposition of G obtained by joining the sets B
and C inII, i.e.

joingo[I] = (IT\ {B,C}H) U{BUC} . (13)
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Clustering

IT" = greedy-joining(IT)

choose {B,C} € argmin (yoms e’ M) — p(yM)
{B’,C'}eén
if p(yonecll) — o(y) <0
I := greedy-joining(join 5~ [I1])
else
Ir:=1
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Greedy moving algorithm:

» The greedy moving algorithm is a local search algorithm that starts
from any initial decomposition, e.g., the fixed point of greedy joining.
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Greedy moving algorithm:

» The greedy moving algorithm is a local search algorithm that starts
from any initial decomposition, e.g., the fixed point of greedy joining.

» |t searches for decompositions with lower cost by recursively moving
individual nodes from one component to a neighboring! component,
possibly a new one.
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Clustering

Greedy moving algorithm:

» The greedy moving algorithm is a local search algorithm that starts
from any initial decomposition, e.g., the fixed point of greedy joining.

» |t searches for decompositions with lower cost by recursively moving
individual nodes from one component to a neighboring! component,
possibly a new one.

» When a cut node is moved out of a component or a node is moved
to a new component, the number of components increases. When the
last element is moved out of a component, the number of
components decreases.
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Definition. For any graph G = (A, E) and any decomposition II of G,

the decomposition 1I is called coarsest iff, for every U € 11, the
component (U, EN (g)) induced by U is maximal.
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Definition. For any graph G = (A, E) and any decomposition II of G,
the decomposition 1I is called coarsest iff, for every U € 11, the
component (U, EN (g)) induced by U is maximal.

Lemma. For any graph GG, the coarsest decomposition is unique. We
denote it by IIF,.

Definition. For any graph G = (A, E), any decomposition II of A and
any a € A, choose U, to be the unique U, € II such that a € U,, and let

Ne={0} U {WelllagW A JweW: {a,w} e E} (14)
G = (Ua, \{a}, EN (Ua\;a})) (15)

For any U € N,, let move,y[II] the decomposition of A obtained by
moving the node a to the set U, i.e.

move,y[Il] =TT\ {U,, U} U{U U {a}} UIIg, . (16)
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IT" = greedy-moving(II)

choose (a,U) € argmin (ymovev’ ) — (M)
a’€A, U'EN,,
if sD(ymoveaU[l_I]) _ (p(yn) <0
I := greedy-moving(move, [I1])
else
Ir:=11
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II" = greedy-moving(II)

choose (a,U) € argmin (ymovev’ ) — (M)
a’€A, U'EN,,
if sD(ymoveaU[l_I]) _ Qp(yn) <0
I := greedy-moving(move, [I1])
else
Ir:=11

A generalization of this algorithm by means of the technique of Kernighan

and Lin (1970) is analogous to the greedy moving algorithm for the set
partition problem.
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Summary.

» Learning and inferring decompositions (clusterings) of a graph is an
unsupervised learning problem w.r.t. constrained data whose feasible
labelings characterize the multicuts of the graph

» The supervised learning problem can assume the form of
lo-regularized logistic regression where samples are pairs of
neighboring nodes and decisions indicate whether these nodes are in
the same or distinct components

» The inference problem assumes the form of the NP-hard minimum
cost multicut problem

» Local search algorithms for tackling this problem are greedy joining,
greedy moving, and greedy moving using the technique of Kernighan
and Lin.
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