Machine Learning I

Bjoern Andres (Lectures) Shengxian Zhao and Jerome Thiessat (Exercises)

Machine Learning for Computer Vision TU Dresden

Winter Term 2021/2022

Contents.

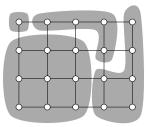
This part of the course is about the problem of decomposing (clustering) a graph into components (clusters), without knowing the number, size or any other property of the clusters.

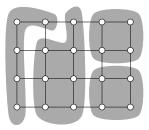
Contents.

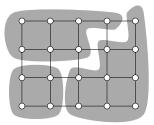
- This part of the course is about the problem of decomposing (clustering) a graph into components (clusters), without knowing the number, size or any other property of the clusters.
- This generalizes the problem of partitioning a set. It specializes to the latter for complete graphs.

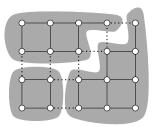
Contents.

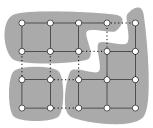
- This part of the course is about the problem of decomposing (clustering) a graph into components (clusters), without knowing the number, size or any other property of the clusters.
- This generalizes the problem of partitioning a set. It specializes to the latter for complete graphs.
- ► Analogously, the problem of decomposing a graph is introduced as an **unsupervised learning** problem w.r.t. **constrained data**.

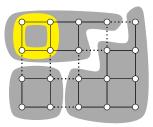


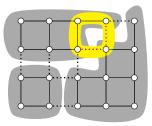


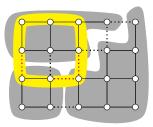


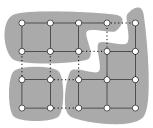


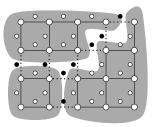












Let G = (A, E) be any graph.

Let G = (A, E) be any graph.

Definition.

▶ A subgraph G' = (A', E') of G is called a **component (cluster)** of G iff G' is non-empty, node-induced (i.e. $E' = E \cap {\binom{A'}{2}}$) and connected.

Let G = (A, E) be any graph.

Definition.

- ▶ A subgraph G' = (A', E') of G is called a **component (cluster)** of G iff G' is non-empty, node-induced (i.e. $E' = E \cap {\binom{A'}{2}}$) and connected.
- A partition Π of the node set A is called a decomposition (clustering) of G iff, for every U ∈ Π, the subgraph (U, E ∩ (^U₂)) of G induced by U is connected (and thus a component of G).

Let G = (A, E) be any graph.

Definition.

- ▶ A subgraph G' = (A', E') of G is called a **component (cluster)** of G iff G' is non-empty, node-induced (i.e. $E' = E \cap {\binom{A'}{2}}$) and connected.
- ▶ A partition Π of the node set A is called a **decomposition** (clustering) of G iff, for every $U \in \Pi$, the subgraph $(U, E \cap {U \choose 2})$ of G induced by U is connected (and thus a component of G).
- We denote by D_G the set of all decompositions of G.

Definition.

A subset $M \subseteq E$ of edges is called a **multicut** of G iff, for every cycle $C \subseteq E$ of G, we have $|C \cap M| \neq 1$.

Definition.

- A subset $M \subseteq E$ of edges is called a **multicut** of G iff, for every cycle $C \subseteq E$ of G, we have $|C \cap M| \neq 1$.
- We denote by M_G the set of all multicuts of G.

Definition.

- A subset $M \subseteq E$ of edges is called a **multicut** of G iff, for every cycle $C \subseteq E$ of G, we have $|C \cap M| \neq 1$.
- We denote by M_G the set of all multicuts of G.

Lemma.

► For any decomposition of a graph *G*, the set of those edges that straddle distinct components is a multicut of *G*. This multicut is said to be **induced** by the decomposition.

Definition.

- A subset $M \subseteq E$ of edges is called a **multicut** of G iff, for every cycle $C \subseteq E$ of G, we have $|C \cap M| \neq 1$.
- We denote by M_G the set of all multicuts of G.

Lemma.

- ► For any decomposition of a graph *G*, the set of those edges that straddle distinct components is a multicut of *G*. This multicut is said to be **induced** by the decomposition.
- ► The map from decompositions to induced multicuts is a **bijection** from D_G to M_G.

Remarks:

The characteristic function y: E → {0, 1} of a multicut y⁻¹(1) decides, for every edge {a, b} = e ∈ E, whether the incident nodes a and b belong to the same component (y_e = 0) or distinct components (y_e = 1).

Remarks:

- The characteristic function y: E → {0,1} of a multicut y⁻¹(1) decides, for every edge {a, b} = e ∈ E, whether the incident nodes a and b belong to the same component (y_e = 0) or distinct components (y_e = 1).
- ► By the definition of a multicut, these decisions are not necessarily independent.

Remarks:

- The characteristic function y: E → {0,1} of a multicut y⁻¹(1) decides, for every edge {a, b} = e ∈ E, whether the incident nodes a and b belong to the same component (y_e = 0) or distinct components (y_e = 1).
- By the definition of a multicut, these decisions are not necessarily independent.

Lemma. For any $y: E \to \{0, 1\}$, the set $y^{-1}(1)$ of those edges that are mapped to 1 is a multicut of G iff the following inequalities are satisfied:

$$\forall C \in \mathsf{cycles}(G) \ \forall e \in C \colon \quad y_e \le \sum_{e' \in C \setminus \{e\}} y_{e'} \tag{1}$$

Constrained Data

We reduce the problem of learning and inferring multicuts to the problem of learning and inferring decisions, by defining **constrained data** (S, X, x, Y) with

$$S = E$$

$$\mathcal{Y} = \left\{ y : E \to \{0, 1\} \middle| \forall C \in \mathsf{cycles}(G) \forall e \in C \colon y_e \leq \sum_{e' \in C \setminus \{e\}} y_{e'} \right\}$$
(2)
(3)

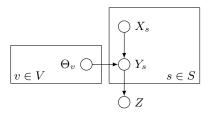
Familiy of functions

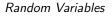
▶ We consider a finite, non-empty set V, called a set of **attributes**, and the **attribute space** $X = \mathbb{R}^V$

Familiy of functions

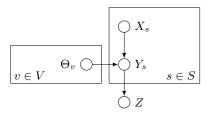
- ▶ We consider a finite, non-empty set V, called a set of **attributes**, and the **attribute space** $X = \mathbb{R}^V$
- We consider **linear functions**. Specifically, we consider $\Theta = \mathbb{R}^V$ and $f: \Theta \to \mathbb{R}^X$ such that

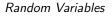
$$\forall \theta \in \Theta \ \forall \hat{x} \in \mathbb{R}^{V} \colon \quad f_{\theta}(\hat{x}) = \sum_{v \in V} \theta_{v} \ \hat{x}_{v} = \langle \theta, \hat{x} \rangle \quad .$$
 (4)



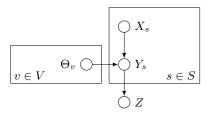


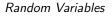
For any {a, b} = s ∈ S = E, let X_s be a random variable whose value is a vector x_s ∈ ℝ^V, the attribute vector of s.



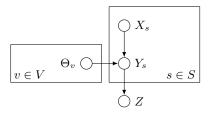


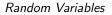
- For any {a, b} = s ∈ S = E, let X_s be a random variable whose value is a vector x_s ∈ ℝ^V, the attribute vector of s.
- For any $s \in S$, let Y_s be a random variable whose value is a binary number $y_s \in \{0, 1\}$, called the **decision** of joining $\{a, b\} = s$.



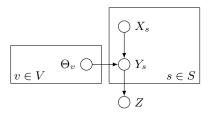


- For any {a, b} = s ∈ S = E, let X_s be a random variable whose value is a vector x_s ∈ ℝ^V, the attribute vector of s.
- For any $s \in S$, let Y_s be a random variable whose value is a binary number $y_s \in \{0, 1\}$, called the **decision** of joining $\{a, b\} = s$.
- For any v ∈ V, let Θ_v be a random variable whose value is a real number θ_v ∈ ℝ, a parameter of the function we seek to learn.





- For any {a, b} = s ∈ S = E, let X_s be a random variable whose value is a vector x_s ∈ ℝ^V, the attribute vector of s.
- For any s ∈ S, let Y_s be a random variable whose value is a binary number y_s ∈ {0,1}, called the **decision** of joining {a,b} = s.
- For any v ∈ V, let Θ_v be a random variable whose value is a real number θ_v ∈ ℝ, a parameter of the function we seek to learn.
- Let Z be a random variable whose value is a subset Z ⊆ {0,1}^S called the set of **feasible decisions**. For clustering, we are interested in Z = Y, the set characterizing multicuts of G.



Factorization

 $P(X, Y, Z, \Theta) = P(Z \mid Y) \prod_{s \in S} P(Y_s \mid X_s, \Theta) \prod_{v \in V} P(\Theta_v) \prod_{s \in S} P(X_s)$

Factorization

► Supervised learning:

 $P(\Theta \mid X, Y, Z)$

Factorization

► Supervised learning:

$$\begin{split} P(\Theta \mid X, Y, Z) &= \frac{P(X, Y, Z, \Theta)}{P(X, Y, Z)} \\ &= \frac{P(Z \mid Y) P(Y \mid X, \Theta) P(X) P(\Theta)}{P(Z \mid X, Y) P(X, Y)} \\ &= \frac{P(Z \mid Y) P(Y \mid X, \Theta) P(X) P(\Theta)}{P(Z \mid Y) P(X, Y)} \\ &= \frac{P(Y \mid X, \Theta) P(X) P(\Theta)}{P(X, Y)} \\ &= \frac{P(Y \mid X, \Theta) P(\Theta)}{P(X, Y)} \\ &\propto P(Y \mid X, \Theta) P(\Theta) \\ &= \prod_{s \in S} P(Y_s \mid X_s, \Theta) \prod_{v \in V} P(\Theta_v) \end{split}$$

Factorization

► Inference:

 $P(Y \mid X, Z, \theta)$

Factorization

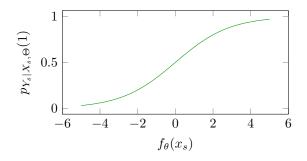
► Inference:

$$P(Y \mid X, Z, \theta) = \frac{P(X, Y, Z, \Theta)}{P(X, Z, \Theta)}$$
$$= \frac{P(Z \mid Y) P(Y \mid X, \Theta) P(X) P(\Theta)}{P(X, Z, \Theta)}$$
$$\propto P(Z \mid Y) P(Y \mid X, \Theta)$$
$$= P(Z \mid Y) \prod_{s \in S} P(Y_s \mid X_s, \Theta)$$

Distributions

► Logistic distribution

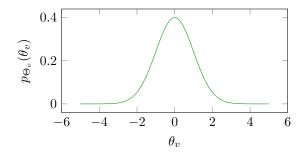
$$\forall s \in S: \qquad p_{Y_s|X_s,\Theta}(1) = \frac{1}{1 + 2^{-f_{\theta}(x_s)}}$$
 (5)



Distributions

• Normal distribution with $\sigma \in \mathbb{R}^+$:

$$\forall v \in V: \qquad p_{\Theta_v}(\theta_v) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\theta_v^2/2\sigma^2} \tag{6}$$



Distributions

Uniform distribution on a subset

$$\forall \mathcal{Z} \subseteq \{0,1\}^S \ \forall y \in \{0,1\}^S \quad p_{Z|Y}(\mathcal{Z},y) \propto \begin{cases} 1 & \text{if } y \in \mathcal{Z} \\ 0 & \text{otherwise} \end{cases}$$

Note that $p_{Z|Y}(\mathcal{Y}, y)$ is non-zero iff the labeling $y \colon S \to \{0, 1\}$ defines an multicut of G.

Lemma. Estimating maximally probable parameters θ , given attributes x and decisions y, i.e.,

$$\underset{\theta \in \mathbb{R}^{V}}{\operatorname{argmax}} \quad p_{\Theta | X, Y, Z}(\theta, x, y, \mathcal{Y})$$

is an l_2 -regularized logistic regression problem.

Lemma. Estimating maximally probable parameters θ , given attributes x and decisions y, i.e.,

$$\underset{\theta \in \mathbb{R}^{V}}{\operatorname{argmax}} \quad p_{\Theta | X, Y, Z}(\theta, x, y, \mathcal{Y})$$

is an l_2 -regularized logistic regression problem.

Proof. Analogous to the case of deciding, we obtain:

$$\underset{\theta \in \mathbb{R}^{V}}{\operatorname{argmax}} \quad p_{\Theta|X,Y,Z}(\theta, x, y, \mathcal{Y})$$

$$= \underset{\theta \in \mathbb{R}^{V}}{\operatorname{argmin}} \quad \sum_{s \in S} \left(-y_{s} f_{\theta}(x_{s}) + \log \left(1 + 2^{f_{\theta}(x_{s})} \right) \right) + \frac{\log e}{2\sigma^{2}} \|\theta\|_{2}^{2} .$$

Lemma. Estimating maximally probable decisions y, given attributes x, given the set of feasible decisions \mathcal{Y} , and given parameters θ , i.e.,

$$\underset{y \in \{0,1\}^S}{\operatorname{argmax}} \quad p_{Y|X,Z,\Theta}(y,x,\mathcal{Y},\theta) \tag{7}$$

assumes the form of the minimum cost multicut problem:

$$\underset{y: E \to \{0,1\}}{\operatorname{argmin}} \quad \sum_{e \in E} (-\langle \theta, x_e \rangle) y_e$$

$$\text{subject to} \quad \forall C \in \operatorname{cycles}(G) \; \forall e \in C \colon \quad y_e \leq \sum_{e' \in C \setminus \{e\}} y_{e'}$$

$$(9)$$

Lemma. Estimating maximally probable decisions y, given attributes x, given the set of feasible decisions \mathcal{Y} , and given parameters θ , i.e.,

$$\underset{y \in \{0,1\}^S}{\operatorname{argmax}} \quad p_{Y|X,Z,\Theta}(y,x,\mathcal{Y},\theta) \tag{7}$$

assumes the form of the minimum cost multicut problem:

$$\underset{y: E \to \{0,1\}}{\operatorname{argmin}} \quad \sum_{e \in E} (-\langle \theta, x_e \rangle) y_e$$

$$\text{subject to} \quad \forall C \in \operatorname{cycles}(G) \; \forall e \in C \colon \quad y_e \leq \sum_{e' \in C \setminus \{e\}} y_{e'}$$

$$(9)$$

Theorem. The minimum cost multicut problem is NP-hard.

Bansal et al. (2004) reduce this problem to the k terminal cut problem whose NP-hardness is an important result Dahlhaus et al. (1994).

We will generalize the three **local search algorithms** we have defined for the set partition problem to the minimum cost multicut problem.

We will generalize the three **local search algorithms** we have defined for the set partition problem to the minimum cost multicut problem.

For simplicity, we define $c: E \rightarrow \mathbb{R}$ such that

$$\forall e \in S: \quad c_e = -\langle \theta, x_e \rangle \tag{10}$$

and write the (linear) cost function $\varphi:\{0,1\}^E \to \mathbb{R}$ such that

$$\forall y \in \{0,1\}^E \colon \quad \varphi(y) = \sum_{e \in E} c_e \, y_e \tag{11}$$

Greedy joining algorithm:

The greedy joining algorithm is a local search algorithm that starts from any initial decomposition.

Greedy joining algorithm:

- The greedy joining algorithm is a local search algorithm that starts from any initial decomposition.
- It searches for decompositions with lower cost by joining pairs of neighboring (!) components recursively.

Greedy joining algorithm:

- The greedy joining algorithm is a local search algorithm that starts from any initial decomposition.
- It searches for decompositions with lower cost by joining pairs of neighboring (!) components recursively.
- ► As components can only grow and the number of components decreases by one in every step, one typically starts from the finest decomposition Π₀ of A into one-elementary components.

Definition. Let G = (A, E) be any graph.

Definition. Let G = (A, E) be any graph.

For any disjoint sets B, C ⊆ A, the pair {B, C} is called neighboring in G iff there exist nodes b ∈ B and c ∈ C such that {b, c} ∈ E.

Definition. Let G = (A, E) be any graph.

- For any disjoint sets B, C ⊆ A, the pair {B, C} is called **neighboring** in G iff there exist nodes b ∈ B and c ∈ C such that {b, c} ∈ E.
- For any decomposition Π of a graph G=(A,E), we define

$$\mathcal{E}_{\Pi} = \left\{ \{B, C\} \in {\Pi \choose 2} \mid \exists b \in B \ \exists c \in C \colon \{b, c\} \in E \right\} \quad .$$
(12)

Definition. Let G = (A, E) be any graph.

- For any disjoint sets B, C ⊆ A, the pair {B, C} is called **neighboring** in G iff there exist nodes b ∈ B and c ∈ C such that {b, c} ∈ E.
- For any decomposition Π of a graph G=(A,E), we define

$$\mathcal{E}_{\Pi} = \left\{ \{B, C\} \in {\Pi \choose 2} \mid \exists b \in B \ \exists c \in C \colon \{b, c\} \in E \right\} .$$
(12)

For any decomposition Π of G = (A, E) and any $\{B, C\} \in \mathcal{E}_{\Pi}$, let $\text{join}_{BC}[\Pi]$ be the decomposition of G obtained by joining the sets B and C in Π , i.e.

$$\mathsf{join}_{BC}[\Pi] = (\Pi \setminus \{B, C\}) \cup \{B \cup C\} \quad . \tag{13}$$

$$\begin{split} \Pi' &= \mathsf{greedy-joining}(\Pi) \\ \mathsf{choose}~\{B,C\} \in \operatornamewithlimits{argmin}_{\{B',C'\} \in \mathcal{E}_\Pi} \varphi(y^{\mathsf{join}_{B'C'}[\Pi]}) - \varphi(y^\Pi) \\ \mathsf{if}~\varphi(y^{\mathsf{join}_{BC}[\Pi]}) - \varphi(y^\Pi) < 0 \\ \Pi' &:= \mathsf{greedy-joining}(\mathsf{join}_{BC}[\Pi]) \\ \mathsf{else} \\ \Pi' &:= \Pi \end{split}$$

Greedy moving algorithm:

The greedy moving algorithm is a local search algorithm that starts from any initial decomposition, e.g., the fixed point of greedy joining.

Greedy moving algorithm:

- The greedy moving algorithm is a local search algorithm that starts from any initial decomposition, e.g., the fixed point of greedy joining.
- It searches for decompositions with lower cost by recursively moving individual nodes from one component to a **neighboring!** component, possibly a new one.

Greedy moving algorithm:

- The greedy moving algorithm is a local search algorithm that starts from any initial decomposition, e.g., the fixed point of greedy joining.
- It searches for decompositions with lower cost by recursively moving individual nodes from one component to a **neighboring!** component, possibly a new one.
- When a cut node is moved out of a component or a node is moved to a new component, the number of components increases. When the last element is moved out of a component, the number of components decreases.

Definition. For any graph G = (A, E) and any decomposition Π of G, the decomposition Π is called **coarsest** iff, for every $U \in \Pi$, the component $(U, E \cap {U \choose 2})$ induced by U is maximal.

Definition. For any graph G = (A, E) and any decomposition Π of G, the decomposition Π is called **coarsest** iff, for every $U \in \Pi$, the component $(U, E \cap {U \choose 2})$ induced by U is maximal.

Lemma. For any graph G, the coarsest decomposition is unique. We denote it by Π_G^* .

Definition. For any graph G = (A, E) and any decomposition Π of G, the decomposition Π is called **coarsest** iff, for every $U \in \Pi$, the component $(U, E \cap {U \choose 2})$ induced by U is maximal.

Lemma. For any graph G, the coarsest decomposition is unique. We denote it by Π_G^* .

Definition. For any graph G = (A, E), any decomposition Π of A and any $a \in A$, choose U_a to be the unique $U_a \in \Pi$ such that $a \in U_a$, and let

$$\mathcal{N}_{a} = \{\emptyset\} \cup \{W \in \Pi \mid a \notin W \land \exists w \in W \colon \{a, w\} \in E\}$$
(14)
$$G_{a} = \left(U_{a} \setminus \{a\}, E \cap \binom{U_{a} \setminus \{a\}}{2}\right)$$
(15)

For any $U \in \mathcal{N}_a$, let move_{aU}[Π] the decomposition of A obtained by moving the node a to the set U, i.e.

$$\mathsf{move}_{aU}[\Pi] = \Pi \setminus \{U_a, U\} \cup \{U \cup \{a\}\} \cup \Pi^*_{G_a} \quad . \tag{16}$$

 $\Pi' = \mathsf{greedy-moving}(\Pi)$

$$\begin{array}{l} \mathsf{choose}~(a,U) \in \mathop{\mathrm{argmin}}_{a' \in A,~U' \in \mathcal{N}_{a'}} \varphi(y^{\mathsf{move}_{a'U'}[\Pi]}) - \varphi(y^{\Pi}) \\ \mathsf{if}~\varphi(y^{\mathsf{move}_{aU}[\Pi]}) - \varphi(y^{\Pi}) < 0 \\ \Pi' := \mathsf{greedy-moving}(\mathsf{move}_{aU}[\Pi]) \\ \mathsf{else} \\ \Pi' := \Pi \end{array}$$

 $\Pi' = \mathsf{greedy-moving}(\Pi)$

$$\begin{array}{l} \mathsf{choose}~(a,U) \in \mathop{\mathrm{argmin}}_{a' \in A,~U' \in \mathcal{N}_{a'}} \varphi(y^{\mathsf{move}_{a'U'}[\Pi]}) - \varphi(y^{\Pi}) \\ \mathsf{if}~\varphi(y^{\mathsf{move}_{aU}[\Pi]}) - \varphi(y^{\Pi}) < 0 \\ \Pi' := \mathsf{greedy-moving}(\mathsf{move}_{aU}[\Pi]) \\ \mathsf{else} \\ \Pi' := \Pi \end{array}$$

A generalization of this algorithm by means of the technique of Kernighan and Lin (1970) is analogous to the greedy moving algorithm for the set partition problem.

Summary.

Learning and inferring decompositions (clusterings) of a graph is an unsupervised learning problem w.r.t. constrained data whose feasible labelings characterize the multicuts of the graph

Summary.

- Learning and inferring decompositions (clusterings) of a graph is an unsupervised learning problem w.r.t. constrained data whose feasible labelings characterize the multicuts of the graph
- The supervised learning problem can assume the form of l₂-regularized logistic regression where samples are pairs of neighboring nodes and decisions indicate whether these nodes are in the same or distinct components

Summary.

- Learning and inferring decompositions (clusterings) of a graph is an unsupervised learning problem w.r.t. constrained data whose feasible labelings characterize the multicuts of the graph
- The supervised learning problem can assume the form of l₂-regularized logistic regression where samples are pairs of neighboring nodes and decisions indicate whether these nodes are in the same or distinct components
- ► The inference problem assumes the form of the NP-hard minimum cost multicut problem

Summary.

- Learning and inferring decompositions (clusterings) of a graph is an unsupervised learning problem w.r.t. constrained data whose feasible labelings characterize the multicuts of the graph
- The supervised learning problem can assume the form of l₂-regularized logistic regression where samples are pairs of neighboring nodes and decisions indicate whether these nodes are in the same or distinct components
- ► The inference problem assumes the form of the NP-hard minimum cost multicut problem
- Local search algorithms for tackling this problem are greedy joining, greedy moving, and greedy moving using the technique of Kernighan and Lin.