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Ordering

Contents.

» This part of the course is about the problem of learning to order a
finite set.
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Ordering

Contents.
» This part of the course is about the problem of learning to order a
finite set.
» This problem is introduced as an unsupervised learning problem
w.r.t. constrained data.
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Ordering

We consider any finite, non-empty set A that we seek to order.
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Ordering

We consider any finite, non-empty set A that we seek to order.

Definition. A strict order on A is a binary relation < C A x A that
satisfies the following conditions:

VacA: -a<a (1)
V{a,b} € (4): a<bxor b<a (2)
V{a,b,c}e(’g): a<b N b<c = a<c (3)
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Ordering

Lemma. The strict orders on A are characterized by the bijections
a:{0,...,]A4| — 1} — A. For any such bijection, consider the order <,
such that

Ya,be A: a<b & at(a)<a'(b) . (4)
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Ordering

Lemma. The strict orders on A are characterized by the bijections

a:{0,...,]A4| — 1} — A. For any such bijection, consider the order <,

such that

Va,be A: a<b & o 'a)<a l(b) .

Lemma. The strict orders on A are characterized by those
y:{(a,b) e Ax A|a#b} = {0,1}
that satisfy the following conditions:

Vae AVbe A\{a}: Yar+Ypa =1
Vae AVbe A\ {a} Vee A\ {a,b}:  Yab+ Ybe — 1 < Yae

(4)
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Ordering

Constrained Data

We reduce the problem of learning and inferring orders to the problem of
learning and inferring decisions, by defining constrained data (S, X,z,Y)
with

S ={(a,b) e Ax A|a#b} (8)
y={ye{o1}* |vacaea\{a}:  yu+pa=1
Va € AVbe A\ {a} Vc e A\ {a,b}:

yab + ybc - ]- S yac} (9)
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Ordering

Familiy of functions

» We consider a finite, non-empty set V, called a set of attributes, and
the attribute space X = RY
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Ordering

Familiy of functions

» We consider a finite, non-empty set V, called a set of attributes, and
the attribute space X = RY

» We consider linear functions. Specifically, we consider © = R" and
f:© — RX such that

VoeovieRY:  fy(d)=) 0,4, =(0,2) .  (10)
veV
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Ordering

veV

Xs

0, O

» For any (a,b) =s € S=F, let X, be a random variable whose value

V?YS ses
b2

Random Variables

is a vector zs € RV, the attribute vector of s.
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Ordering

veV

Xs

0, O

seS

» For any (a,b) =s € S=F, let X, be a random variable whose value

Random Variables

sORE
:
Oz

is a vector zs € RV, the attribute vector of s.

» For any (a,b) = s € S, let Y, be a random variable whose value is a
binary number y, € {0, 1}, called the decision placing a before b.
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Ordering

veV

0, O

Xs

seS

For any (a,b) = s € S = F, let X, be a random variable whose value

Random Variables

sORE
:
Oz

is a vector zs € RV, the attribute vector of s.

For any (a,b) = s € S, let Y be a random variable whose value is a
binary number y, € {0, 1}, called the decision placing a before b.
For any v € V, let ©, be a random variable whose value is a real
number 6, € R, a parameter of the function we seek to learn.
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Ordering

Xs

@,U i s
veV O ?Y se S
Oz

Random Variables

For any (a,b) = s € S = F, let X, be a random variable whose value
is a vector zs € RV, the attribute vector of s.

For any (a,b) = s € S, let Y be a random variable whose value is a
binary number y, € {0, 1}, called the decision placing a before b.

For any v € V, let ©, be a random variable whose value is a real
number 6, € R, a parameter of the function we seek to learn.

Let Z be a random variable whose value is a subset Z C {0, 1}
called the set of feasible decisions. For ordering, we are interested in

Z =), the set of characteristic functions of strict orders on A.
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P(X,Y,Z,0) =

Ordering

Xs
@'UO g )/Ts
veV se S
v
Oz
Factorization

Pz |Y) [[P(Y. | X.,0) [ P(60) J] P(Xs

ses

veV

ses
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Ordering

Factorization

» Supervised learning:

PO XY, Z)
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Ordering

Factorization

» Supervised learning:

P(X,Y,Z,0)

P(X,Y,Z)

P(Z|Y)P(Y | X,0) P(X) P(©)
P(Z|X,Y)P(X,Y)

P(Z|Y)P(Y | X,0)P(X)P(©)
P(Z|Y)P(X,Y)

P(Y | X,0)P(X)P(©)
P(X,Y)

x P(Y | X,0) P(©)

=[] Pv. | x..0) [] P

seS veV

PO X.,Y,Z) =
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Ordering

Factorization

» Inference:

P(Y | X,Z.0)
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Ordering

Factorization
» Inference:
_ PX,Y,Z,0)
PYIX. 2.9 =5 Z o)
_ P(Z]Y)P(Y | X,0) P(X) P(O)
- P(X,Z,0)

xP(Z|Y)P(Y | X,0)

=P(Z|Y) ][] P(Vs| X., ©)
seS
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Ordering

Distributions

» Logistic distribution

1

vs€S: pvx.e) = 5 wmen

1, |
K
80.57 R
N
&

07 | | | | | ]
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Ordering

Distributions

» Normal distribution with 0 € R*:

1 2 2
YoeV: (0,) = ——e /2 12
pev( U) O'\/% ( )
0.4 R
<
~ 0.2 R
@
Y
0L ! ! ! ! ! il
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Ordering

Distributions

» Uniform distribution on a subset

1 ifyez

VZ C {07 1}5 Vy € {07 1}5 pZ\Y(Zay) X .
0 otherwise

Note that pz|y (Y, y) is non-zero iff the labeling y: S — {0, 1}
defines an order on A.
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Ordering

Lemma. Estimating maximally probable parameters 6, given attributes x
and decisions y, i.e.,

argmax p@\X7Y7Z(97x7y7y)
OeRV

is an lo-regularized logistic regression problem.
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Ordering

Lemma. Estimating maximally probable parameters 6, given attributes x
and decisions y, i.e.,

argmax p@\X7Y7Z(97x7y7y)
OeRV

is an lo-regularized logistic regression problem.

Proof. Analogous to the case of deciding, we obtain:

argmax pe|x,v,z(0,7,y,))

0ERV
loge
_ ~ e folzs) +1 (1 2f9(xs>)) 02 .
argmin Z( Ys fo(zs) +log (1+ + 5z 1013

ses
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Ordering

Lemma. Estimating maximally probable decisions ¥, given attributes z,

given the set of feasible decisions ), and given parameters 6, i.e.,

argmax py\x,Z,@(ZhI,y,e)
yE{O,l}S

assumes the form of the linear ordering problem:
argmin (—=(0,zs)) ys
y: S—{0,1} SEZS
subject to Va € AVbe A\{a}: Yab+ Ypa =1
Va e AVbe A\ {a} Vce A\ {a,b}:
Yab + Ybe — 1 < Yac

(13)
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Ordering

Lemma. Estimating maximally probable decisions ¥, given attributes z,
given the set of feasible decisions ), and given parameters 6, i.e.,

argmax py\x,Z,@(% z,),0) (13)
yE{O,l}S

assumes the form of the linear ordering problem:

argmin (—(0,24)) ys (14)
y: S—{0,1} SEZS
subject to Va € AVbe A\{a}: Yab+ Ypa =1 (15)

Va e AVbe A\ {a} Vce A\ {a,b}:
yab+ybc_ ]- S Yac (16)

Theorem. The linear ordering problem is NP-hard.

The linear ordering problem has been studied intensively. A comprehensive
survey is by Marti and Reinelt (2011). Pioneering research is by Grotschel
(1984).
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We define two local search algorithms for the linear ordering problem.
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We define two local search algorithms for the linear ordering problem.

For simplicity, we define ¢ : S — R such that
VseS: c¢s=—(0,xs) (17)

and write the (linear) cost function ¢ : {0,1}° — R such that

Vy € {O’ 1}S: @(y) = ch Ys (18)

ses
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Ordering

Greedy transposition algorithm:

» The greedy transposition algorithm starts from any initial strict order.
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Ordering

Greedy transposition algorithm:
» The greedy transposition algorithm starts from any initial strict order.

» |t searches for strict orders with lower objective value by swapping
pairs of elements
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Ordering

Greedy transposition algorithm:
» The greedy transposition algorithm starts from any initial strict order.

» |t searches for strict orders with lower objective value by swapping
pairs of elements

Definition. For any bijection « : {0,...,|A| — 1} — A and any
gk €{0,...,|A] — 1}, let transpose;,[a] the bijection obtained from a
by swapping a; and ay, i.e.

o if [ :j
Vi€ {0,...,|A[=1}: transpose;i[a](l) = ¢ a; ifl=k . (19)

«; otherwise
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Ordering

o' = greedy-transposition(«)

choose (j, k) € argmin (ytransposeywlaly
0<j'<k'<|A]|
if sD(ytr'amsposejk[oc]) _ SD(yoz) <0
' := greedy-transposition(transpose;; [a])
else
o =«

o(y®)
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Ordering

Greedy transposition using the technique of Kernighan and Lin

(1970)
o’ = greedy-transposition-kl(ca)
o=«
60 :=0
J = { ’ |A| - 1}
t:=0
repeat

choose (j, k) € argmin p(y
{G" k) eTE i <k}
attl = transpose; ;. [cv¢]
Sp41 1= W(yat
Jepr = Je \ {5, k}
t:=t+1
until [J] < 2

t{:=min argmin > 4,
t'€{0,...,|A|} T=0

6, <0

N
°. gmm

else

Q
Il

[e3

t
transpose . o
pose i/ s | ])

:= greedy-transposition-kl(c

(build sequence of swaps)

— o)

Y — e <0

(move «; and «y, only once)

(choose sub-sequence)

i) (recurse)

(terminate)
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Ordering

Summary.

» Learning and inferring orders on a finite set A is an unsupervised
learning problem w.r.t. constrained data whose feasible labelings
characterize the strict orders on A.
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lo-regularized logistic regression where samples are pairs (a,b) € A?
such that a # b and decisions indicate whether a < b.
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Ordering

Summary.

» Learning and inferring orders on a finite set A is an unsupervised
learning problem w.r.t. constrained data whose feasible labelings
characterize the strict orders on A.

» The supervised learning problem can assume the form of
lo-regularized logistic regression where samples are pairs (a,b) € A?
such that a # b and decisions indicate whether a < b.

» The inference problem assumes the form of the NP-hard linear
ordering problem

» Local search algorithms for tackling this problem are greedy
transposition and greedy transposition using the technique of
Kernighan and Lin.
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