Computer Vision I

Bjoern Andres, Holger Heidrich

Machine Learning for Computer Vision TU Dresden

Winter Term 2022/2023

Welcome

- Course consisting of
 - ► Lectures in ASB/0028/H on Mon, 11:10–13:00
 - Exercise groups starting Oct 17th

Online	Mon, 14:50-16:20
In APB/E069	Tue, 13:00-14:50
In APB/E069	Tue, 14:50-16:40

- Self-study and moderated discussion in a forum
- Final examination (covering lectures and exercises)
- https://mlcv.inf.tu-dresden.de/courses/22-winter/cv1/index.html

► Registration:

- All participating students need to register through OPAL
- Those enrolled in the study program Computational Modeling and Simulation (CMS) need to register additionally via SELMA.

Textbooks:

- Szeliski, R.. Computer Vision: Algorithms and Applications, 2nd ed., 2020, available online at http://szeliski.org/Book/
- Hartley, R. I. and Zisserman, A.. Multiple View Geometry in Computer Vision. Second edition. 2004. Cambridge University Press

No recordings/reproductions of the lectures or exercises!

Computer Vision

Computer Vision is a branch of computer science devoted to the *study* and *development* of mathematical models, algorithms, software and systems for analyzing and interpreting images.

- Poses challenging problems
- Combines insights and methods from multiple disciplines
 - Mathematics (esp. optimization, probability theory, statistics)
 - Computer Science (esp. algorithms, complexity, software engineering)
 - Engineering (electrical, mechanical, optical)
- Provides an opportunity for applying analytical and engineering skills
- Is rewarding by visual results
- ► Has impact on applications (medical, robotic, consumer)
- Grows dynamically
- Offers excellent career opportunities (esp. in tech companies and startups)

Computer Vision

Computer Vision is a branch of computer science devoted to the *study* and *development* of mathematical models, algorithms, software and systems for analyzing and interpreting images.

- Leading scholarly journals:
 - Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
 - International Journal on Computer Vision (IJCV)
 - Journal on Mathematical Imaging and Vision (JMIV)
- Leading academic conferences:
 - Computer Vision and Pattern Recognition (CVPR)
 - International Conference on Computer Vision (ICCV)
 - European Conference on Computer Vision (ECCV)
- Scientific communities
 - Computer Vision
 - Mathematical Image Analysis
 - Medical Image Analysis
 - Computational Imaging (tomography, MRI, radar, ultrasound, etc.)
 - Machine Learning

Contents

- 1. Formation of digital images
 - Real projective geometry
 - Projective camera
 - Color spaces
- 2. Operators on digital images
 - Point operators
 - Linear operators
 - Non-linear operators
 - Classic computer vision

- 3. Fourier analysis of digital images
 - Discrete Fourier transform
 - Discrete Cosine transform
- 4. Geometric analysis of digital images
 - Panorama stitching
 - Epipolar geometry
 - Stereo vision

Contents

- 5. Classification of digital images
 - Probabilistic model
 - Machine learning problem
 - Learning algorithms
 - Inference problem
 - Inference algorithms
- 6. Decomposition of digital images
 - Region growing heuristics
 - ► (Lifted) multicut problem
 - Local search algorithms
- 7. Segmentation of digital images
 - Joint graph decomposition and node labeling problem
 - Local search algorithms

- 8. Object recognition in digital images
 - Single object recognition
 - Multiple object recognition
- 9. Object tracking in digital images
 - Single object tracking
 - Multiple object tracking