Computer Vision I

Bjoern Andres, Holger Heidrich

Machine Learning for Computer Vision
TU Dresden

Winter Term 2022/2023

Real projective geometry

Motivation

- Many geometric calculations in the field of computer vision have a simpler algebraic form in the coordinates of a projective space than in the coordinates of a vector space, or require less case distinctions.
- APIs of computer vision software as well as GPU hardware are designed for these forms.

Literature

- Hartley, R. I. and Zisserman, A.. Multiple View Geometry in Computer Vision. Second edition. 2004. Cambridge University Press

Real projective geometry

Definition. For any vector space V over a field K, the same bi-ray relation is the binary relation \sim over $V \backslash\{0\}$ such that for all $v, w \in V \backslash\{0\}$, we have

$$
\begin{equation*}
v \sim w \quad \Leftrightarrow \quad \exists k \in K \backslash\{0\}: w=k v \tag{1}
\end{equation*}
$$

Lemma. The same bi-ray relation is an equivalence relation.
Definition. The equivalence classes of the same ray relation are called bi-rays.
Example. $V=\mathbb{R}^{2}$

Real projective geometry

Definition. For any vector space V, the projective space $P(V)$ is the set of bi-rays.
In case $V=K^{n+1}$ for some $n \in \mathbb{N}$, we write $P_{n}(K)$ instead of $P(V)$ and call it the ${ }^{1} n$-dimensional projective space.

$$
\begin{array}{ll}
P_{n}(\mathbb{R}) & n \text {-dimensional real projective space } \\
P_{2}(\mathbb{R}) & \text { projective plane } \\
P_{1}(\mathbb{R}) & \text { projective line }
\end{array}
$$

[^0]
Real projective geometry

Definition. Fix a K vector space V and a basis B of V. For any $p \in P(V)$ and any $c: B \rightarrow K$ such that $\sum_{b \in B} c_{b} b \in p$, the coordinates c are called projective coordinates of p.

Lemma. Fix a K vector space V and a basis B of V. For any projective coordinates c, c^{\prime} of the same point p, there exists a $\lambda \in K \backslash\{0\}$ such that $c^{\prime}=\lambda c$.

Example. $P_{1}(\mathbb{R})$

Notation:

$$
p=\left[\begin{array}{c}
1 \\
\frac{1}{2}
\end{array}\right]=\left[\begin{array}{l}
-\frac{1}{2} \\
-\frac{1}{4}
\end{array}\right]
$$

Square brackets indicate equivalence classes

Real projective geometry

For a function $f: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$, the condition $f(v)=0$ does not necessarily well-define a subset of $P_{n}(\mathbb{R})$.
Example: Consider $f(v)=v_{0} v_{1}+v_{0}$ and $\left[\begin{array}{c}1 \\ -1\end{array}\right]=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ and observe that $f\left(\left[\begin{array}{c}1 \\ -1\end{array}\right]\right)=0 \neq-2=f\left(\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right)$.

Definition. A function $f: V \rightarrow W$ between two K vector spaces is called homogenous of degree $k \in \mathbb{N}$ if

$$
\begin{equation*}
\forall v \in V \forall \lambda \in K \backslash\{0\}: \quad f(\lambda v)=\lambda^{k} f(v) \tag{2}
\end{equation*}
$$

Lemma. For any homogenous function $f: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$, the set $\left\{v \in P_{n}(\mathbb{R}) \mid f(v)=0\right\}$ is well-defined.

Lemma. For any polynomial function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of degree k, the function $g: \mathbb{R}^{n+1} \rightarrow \mathbb{R}: v \mapsto v_{n}^{k} f\left(v / v_{n}\right)$ is a homogenous polynomial function of degree k. Moreover:

$$
\begin{equation*}
\forall v \in \mathbb{R}^{n}: \quad f\left(v_{0}, \ldots, v_{n-1}\right)=g\left(v_{0}, \ldots, v_{n-1}, 1\right) \tag{3}
\end{equation*}
$$

Real projective geometry

Let $n \in \mathbb{N}$ and $n \geq 2$.

Any point $v \in \mathbb{R}^{n}$ may be represented as the bi-ray $\left[v_{0}, \ldots, v_{n-1}, 1\right] \in P_{n}(\mathbb{R})$.
Bi-rays $\left[w_{0}, \ldots, w_{n-1}, 0\right] \in P_{n}(\mathbb{R})$ do not represent points in \mathbb{R}^{2}.
We may augment \mathbb{R}^{n} by points at infinity $\infty\left(w_{0}, \ldots, w_{n-1}\right)$ represented by these bi-rays.

Any ($n-1$)-dimensional hyperplane
$\left\{v \in \mathbb{R}^{n} \mid c_{0} v_{0}+\cdots+c_{n-1} v_{n-1}+c_{n}=0\right\}$ may be represented as the bi-ray $c:=\left[c_{0}, \ldots, c_{n}\right] \in P_{n}(\mathbb{R})$.
We have $\left(c_{0}, \ldots, c_{n-1}\right) \neq 0$. (Otherwise, the hyperplane would not have dimension $n-1$). Thus, the bi-ray $[0, \ldots, 0,1] \in P_{n}(\mathbb{R})$ does not represent an ($n-1$)-dimensional hyperplane.
We may associate with it an ($n-1$)-dimensional hyperplane at infinity.

Lemma. A point $v \in P_{n}(\mathbb{R})$ lies on an $(n-1)$-dimensional hyperplane $c \in P_{n}(\mathbb{R})$ if and only if $c^{T} v=0$. (Precisely the points at infinity lie on the ($n-1$)-dimensional hyperplane at infinity).

[^0]: ${ }^{1}$ Recall: Every K vector space of dimension $n+1$ is isomorphic to K^{n+1}.

