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Real projective geometry

Motivation

I Many geometric calculations in the field of computer vision have a simpler
algebraic form in the coordinates of a projective space than in the
coordinates of a vector space, or require less case distinctions.

I APIs of computer vision software as well as GPU hardware are designed for
these forms.

Literature

I Hartley, R. I. and Zisserman, A.. Multiple View Geometry in Computer
Vision. Second edition. 2004. Cambridge University Press
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Real projective geometry

Definition. For any vector space V over a field K, the same bi-ray relation is
the binary relation ∼ over V \ {0} such that for all v, w ∈ V \ {0}, we have

v ∼ w ⇔ ∃k ∈ K \ {0} : w = k v (1)

Lemma. The same bi-ray relation is an equivalence relation.

Definition. The equivalence classes of the same ray relation are called bi-rays.

Example. V = R2
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Real projective geometry

Definition. For any vector space V , the projective space P (V ) is the set of
bi-rays.

In case V = Kn+1 for some n ∈ N, we write Pn(K) instead of P (V ) and call
it the1 n-dimensional projective space.

Pn(R) n-dimensional real projective space
P2(R) projective plane
P1(R) projective line

1Recall: Every K vector space of dimension n + 1 is isomorphic to Kn+1.
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Real projective geometry

Definition. Fix a K vector space V and a basis B of V . For any p ∈ P (V ) and
any c : B → K such that

∑
b∈B cbb ∈ p, the coordinates c are called projective

coordinates of p.

Lemma. Fix a K vector space V and a basis B of V . For any projective
coordinates c, c′ of the same point p, there exists a λ ∈ K \ {0} such that
c′ = λc.

Example. P1(R)

b0

b1 p
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w

Notation:

p =

[
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1
2

]
=

[
− 1

2

− 1
4

]

Square brackets indicate
equivalence classes
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Real projective geometry

For a function f : Rn+1 → R, the condition f(v) = 0 does not necessarily
well-define a subset of Pn(R).
Example: Consider f(v) = v0v1 + v0 and

[
1
−1

]
=
[−1

1

]
and observe that

f(
[

1
−1

]
) = 0 6= −2 = f(

[−1
1

]
).

Definition. A function f : V →W between two K vector spaces is called
homogenous of degree k ∈ N if

∀v ∈ V ∀λ ∈ K \ {0} : f(λ v) = λkf(v) (2)

Lemma. For any homogenous function f : Rn+1 → R, the set
{v ∈ Pn(R) | f(v) = 0} is well-defined.

Lemma. For any polynomial function f : Rn → R of degree k, the function
g : Rn+1 → R : v 7→ vkn f(v/vn) is a homogenous polynomial function of degree
k. Moreover:

∀v ∈ Rn : f(v0, . . . , vn−1) = g(v0, . . . , vn−1, 1) (3)
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Real projective geometry

Let n ∈ N and n ≥ 2.

Any point v ∈ Rn may be represented as the bi-ray [v0, . . . , vn−1, 1] ∈ Pn(R).
Bi-rays [w0, . . . , wn−1, 0] ∈ Pn(R) do not represent points in R2.

We may augment Rn by points at infinity ∞(w0, . . . , wn−1) represented by
these bi-rays.

Any (n− 1)-dimensional hyperplane
{v ∈ Rn | c0v0 + · · ·+ cn−1vn−1 + cn = 0} may be represented as the bi-ray
c := [c0, . . . , cn] ∈ Pn(R).
We have (c0, . . . , cn−1) 6= 0. (Otherwise, the hyperplane would not have
dimension n− 1). Thus, the bi-ray [0, . . . , 0, 1] ∈ Pn(R) does not represent an
(n− 1)-dimensional hyperplane.

We may associate with it an (n− 1)-dimensional hyperplane at infinity.

Lemma. A point v ∈ Pn(R) lies on an (n− 1)-dimensional hyperplane
c ∈ Pn(R) if and only if cT v = 0. (Precisely the points at infinity lie on the
(n− 1)-dimensional hyperplane at infinity).


