Computer Vision I

Bjoern Andres, Holger Heidrich

Machine Learning for Computer Vision TU Dresden

Winter Term 2022/2023

Projective camera

Projective camera

Projective camera

Projective camera

No image formation because

- light incident on one point on the screen originates from different points in the scene

Projective camera

No image formation because

- light incident on one point on the screen originates from different points in the scene
- light emitted from one point in the scene is incident on different points on the screen

Projective camera

Image formation because

- all light incident on one (any given) point on the screen originates from the same point in the scene
- all light emitted from one (any given) point in the scene is incident on the same point on the screen

Projective camera

Image formation because

- all light incident on one (any given) point on the screen originates from the same point in the scene
- all light emitted from one (any given) point in the scene is incident on the same point on the screen

Projective camera

- Limitation: Intensity of light on the screen infinitesimally small
- Remedy: Optics (see e.g. lectures ${ }^{1}$ by Prof. Dr. J. Czarske at TU Dresden)
- Here, we use the projective camera as a mathematical model of real optics

[^0]Projective camera

Vector coordinates (by the intersect theorem)

$$
\begin{equation*}
\frac{y}{f}=\frac{Y}{Z} \quad \Leftrightarrow \quad y Z=f Y \quad \Leftrightarrow \quad y=\frac{f Y}{Z} \tag{1}
\end{equation*}
$$

Projective coordinates

$$
\left[\begin{array}{c}
y \tag{2}\\
w
\end{array}\right]=\left[\begin{array}{lll}
f & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
Y \\
Z \\
1
\end{array}\right]
$$

Projective camera

Vector coordinates (by the intersect theorem)

$$
\begin{equation*}
\frac{y-y_{0}}{f}=\frac{Y}{Z} \quad \Leftrightarrow \quad y Z=f Y+y_{0} Z \quad \Leftrightarrow \quad y=\frac{f Y}{Z}+y_{0} \tag{1}
\end{equation*}
$$

Projective coordinates

$$
\left[\begin{array}{c}
y \tag{2}\\
w
\end{array}\right]=\left[\begin{array}{ccc}
f & y_{0} & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
Y \\
Z \\
1
\end{array}\right]
$$

Projective camera

Projective coordinates

$$
\left[\begin{array}{c}
x \tag{1}\\
y \\
w
\end{array}\right]=\left[\begin{array}{llll}
f & 0 & x_{0} & 0 \\
0 & f & y_{0} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

Projective camera

$$
\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right]=\left[\begin{array}{llcc}
f & 0 & x_{0} & 0 \\
0 & f & y_{0} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

$$
\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right]=\left[\begin{array}{cccc}
f_{x} & 0 & x_{0} & 0 \\
0 & f_{y} & y_{0} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

$$
\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right]=\left[\begin{array}{cccc}
f_{x} & s & x_{0} & 0 \\
0 & f_{y} & y_{0} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

Projective camera

$$
\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right]=\left[\begin{array}{cccc}
f_{x} & s & x_{0} & 0 \\
0 & f_{y} & y_{0} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{cccc}
R_{00} & R_{01} & R_{02} & t_{0} \\
R_{10} & R_{11} & R_{12} & t_{1} \\
R_{20} & R_{21} & R_{22} & t_{2} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
X^{\prime} \\
Y^{\prime} \\
Z^{\prime} \\
1
\end{array}\right]
$$

[^0]: ${ }^{1}$ https://tu-dresden.de/ing/elektrotechnik/iee/mst/studium/lehrveranstaltungen

