Computer Vision I

Bjoern Andres, Holger Heidrich

Machine Learning for Computer Vision TU Dresden

Winter Term 2022/2023

Digital images

For any $n \in \mathbb{N}$, let $[n] := \{0, \ldots, n-1\}$.

Definition 1. A digital image of width $n_0 \in \mathbb{N}$ and height $n_1 \in \mathbb{N}$ with colors C is a map $f : [n_0] \times [n_1] \to C$.

Examples.

$$\begin{array}{lll} \mbox{Gray levels} & C = \{0, \dots, 255\} \\ \mbox{RGB colors} & C = \{0, \dots, 255\}^3 \\ \mbox{Real numbers} & \mbox{E.g.} & C = \mathbb{R} \mbox{ or } C = [0, 1] \\ \mbox{Real tuples} & \mbox{E.g.} & C = \mathbb{R}^n \mbox{ or } C = [0, 1]^n \end{array}$$

Definition 2. For any digital image $f: [n_0] \times [n_1] \to C$, consider the graph G = (V, E) with $V = [n_0] \times [n_1]$ and such that for any $u, v \in V$ we have $\{u, v\} \in E$ if and only if |u - v| = 1. It is called the **pixel grid graph** of the image. Its nodes are called the **pixels** of the image.

Point operator

Definition 3. For any $n_0, n_1 \in \mathbb{N}$ and any set C, a **point operator** on digital images of width n_0 , height n_1 and with colors C is a function

$$\varphi \colon C^{[n_0] \times [n_1]} \to C^{[n_0] \times [n_1]} \tag{1}$$

such that there exists a function

$$\chi \colon C \times [n_0] \times [n_1] \to C \tag{2}$$

such that for every digital image $f\colon [n_0]\times [n_1]\to C$ and every pixel $(x,y)\in [n_0]\times [n_1],$ we have

$$\varphi(f)(x,y) = \chi(f(x,y), x, y) \quad . \tag{3}$$

Remark. The color $\varphi(f)(x, y)$ of the image $\varphi(f)$ at the pixel (x, y) depends only on the color f(x, y) of the image f at that same location, and on the location (x, y) itself.

Example. Every $\xi \colon C \to C$ defines a point operator $\varphi_{\xi} \colon f \mapsto \xi \circ f$.

Gamma Operator

Definition 4. Let C = [0, 1]. For any $\gamma \in (0, \infty)$ and the function $\xi : C \to C : c \mapsto c^{\gamma}$, the point operator $\varphi_{\xi} : f \mapsto \xi \circ f$ is called the gamma operator.

Definition 5. The histogram of a digital image $f: [n_0] \times [n_1] \to C \subseteq \mathbb{R}$ is the function $h: C \to \mathbb{N}_0$ such that for any $c \in C$ we have

$$h(c) = |\{r \in [n_0] \times [n_1] \mid f(r) = c\}|$$
(4)

The cumulative distribution of colors is the function $H\colon C\to [0,1]$ such that for any $c\in C$ we have

$$H(c) = \frac{1}{n_0 n_1} \sum_{\substack{c' \in f([n_0] \times [n_1]) \\ c' \le c}} h(c)$$
(5)

Definition 5. The histogram of a digital image $f: [n_0] \times [n_1] \to C \subseteq \mathbb{R}$ is the function $h: C \to \mathbb{N}_0$ such that for any $c \in C$ we have

$$h(c) = |\{r \in [n_0] \times [n_1] \mid f(r) = c\}|$$
(4)

The cumulative distribution of colors is the function $H\colon C\to [0,1]$ such that for any $c\in C$ we have

$$H(c) = \frac{1}{n_0 n_1} \sum_{\substack{c' \in f([n_0] \times [n_1]) \\ c' \le c}} h(c)$$
(5)

Definition 6. For any $C = [c^-, c^+] \subseteq \mathbb{R}$ and any monotonous function $H: C \to [0, 1]$ such that $H(c^+) = 1$, *H*-equilibration is the function

$$\xi_H: [c^-, c^+] \to [c^-, c^+]$$

 $c \mapsto c^- + (c^+ - c^-) H(c)$

For fixed H and fixed $n_0, n_1 \in \mathbb{N}$, H-equilibration defines a point operator that we call the H-equilibrator:

$$\begin{aligned} \varphi_{\xi_H} \colon \quad C^{[n_0] \times [n_1]} \to C^{[n_0] \times [n_1]} \\ f \mapsto \xi_H \circ f \end{aligned}$$

For any digital image f with the cumulative distribution H of colors C, we call the image $\varphi_{\xi_H}(f)$ the **self-equilibration of** f.

Question. Is self-equilibration a point operator?

