Computer Vision I

Bjoern Andres, Holger Heidrich

Machine Learning for Computer Vision TU Dresden

Winter Term 2022/2023

Non-linear operators

Definition 1. Let $n_{0}, n_{1} \in \mathbb{N}$, let $V=\left[n_{0}\right] \times\left[n_{1}\right]$ and let $C \subseteq \mathbb{R}$. Given

- a metric $d_{s}: V \times V \rightarrow \mathbb{R}_{0}^{+}$and a decreasing $w_{s}: \mathbb{R}_{0}^{+} \rightarrow[0,1]$
- a metric $d_{c}: C \times C \rightarrow \mathbb{R}_{0}^{+}$and a decreasing $w_{c}: \mathbb{R}_{0}^{+} \rightarrow[0,1]$
- a $N: V \rightarrow 2^{V}$ that defines for every pixel $v \in V$ a set $N(v) \subseteq V$ called the spatial neighborhood of v
- the $\nu: C^{V} \rightarrow \mathbb{R}^{V}$, called normalization, such that for any digital image $f: V \rightarrow C$ and any pixel $v \in V$:

$$
\begin{equation*}
\nu(f)(v)=\sum_{v^{\prime} \in N(v)} w_{s}\left(d_{s}\left(v, v^{\prime}\right)\right) w_{c}\left(d_{c}\left(f(v), f\left(v^{\prime}\right)\right)\right) \tag{1}
\end{equation*}
$$

the bilateral filter w.r.t. $d_{s}, w_{s}, d_{c}, w_{c}$ and N is the $\beta: C^{V} \rightarrow(\mathbb{R} C)^{V}$ such that for any digital image $f: V \rightarrow C$ and any pixel $v \in V$:

$$
\begin{equation*}
\beta(f)(v)=\frac{1}{\nu(f)(v)} \sum_{v^{\prime} \in N(v)} w_{s}\left(d_{s}\left(v, v^{\prime}\right)\right) w_{c}\left(d_{c}\left(f(v), f\left(v^{\prime}\right)\right)\right) f\left(v^{\prime}\right) \tag{2}
\end{equation*}
$$

Non-linear operators

Example.

- $d_{s}\left(v, v^{\prime}\right)=\left\|v-v^{\prime}\right\|_{2}$ and, for a filter parameter $\sigma_{s}>0$:

$$
\begin{equation*}
w_{s}(x)=\frac{1}{\sigma_{s} \sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2 \sigma_{s}^{2}}\right) \tag{3}
\end{equation*}
$$

- $d_{c}\left(g, g^{\prime}\right)=\left|g-g^{\prime}\right|$ and, for a filter parameter $\sigma_{c}>0$:

$$
\begin{equation*}
w_{c}(x)=\frac{1}{1+\frac{x^{2}}{\sigma_{c}^{2}}} \tag{4}
\end{equation*}
$$

- for a filter parameter $n \in \mathbb{R}_{0}^{+}$:

$$
\begin{equation*}
N(v)=\left\{v^{\prime} \in V \mid d_{s}\left(v, v^{\prime}\right) \leq n\right\} \tag{5}
\end{equation*}
$$

Non-linear operators

Suggested self-study:

- Implement a bilateral filter for gray-scale images
- Apply your implementation to a digital image
- Try different metrics d_{s}, d_{r} and weighting functions w_{s}, w_{r}
- Try iterating bilateral filtering
- Share and discuss your implementations, outputs and findings via OPAL

Advanced self-study:

- Define, implement and apply bilateral filtering for color images
- Share and discuss your implementations, outputs and findings via OPAL

Non-linear operators

Definition 2. Let $n_{0}, n_{1} \in \mathbb{N}$, let $V=\left[n_{0}\right] \times\left[n_{1}\right]$, let $C \subseteq \mathbb{R}$ and let $N: V \rightarrow 2^{V}$ define for every pixel $v \in V$ a set $N(v) \subseteq V$ called the spatial neighborhood of v. The median operator wrt. N is the function $M: C^{V} \rightarrow C^{V}$ such that for any $f: V \rightarrow C$ and any $v \in V$:

$$
\begin{equation*}
M(f)(v)=\operatorname{median} f(N(v)) \tag{6}
\end{equation*}
$$

Non-linear operators

Noisy image

f

Filtered image

Non-linear operators

Morphological operators

- We may identify any binary infinite digital image $f: \mathbb{Z}^{2} \rightarrow\{0,1\}$ with its support set $f^{-1}(1)=\left\{v \in \mathbb{Z}^{2} \mid f(v)=1\right\}$.
- This allows us to apply operations from the field of binary mathematical morphology to binary infinite digital images.

Non-linear operators

${ }^{1}$ By courtesy of Stephan Grill and his lab at the MPI of Molecular Cell Biology and Genetics.

Non-linear operators

Definition 3. For any $A, B \subseteq \mathbb{Z}^{2}$, we define

$$
\begin{align*}
& A \ominus B:=\left\{v \in \mathbb{Z}^{2} \mid B+v \subseteq A\right\} \tag{7}\\
& A \oplus B:=\left\{v \in \mathbb{Z}^{2} \mid-B+v \cap A \neq \emptyset\right\} \tag{8}
\end{align*}
$$

and call these operations erosion and dilation. Moreover, we call the operations

$$
\begin{align*}
& A \circ B:=(A \ominus B) \oplus B \tag{9}\\
& A \bullet B:=(A \oplus B) \ominus B \tag{10}
\end{align*}
$$

opening and closing.
Definition 4. For any (typically small) support set B called a structuring element and any morphological operation \otimes, the operator $\varphi_{\otimes B}:\{0,1\}^{\mathbb{Z} \times \mathbb{Z}} \rightarrow\{0,1\}^{\mathbb{Z} \times \mathbb{Z}}$ such that for any (infinite binary digital image) $f: \mathbb{Z}^{2} \rightarrow\{0,1\}$ and any (pixel) $v \in \mathbb{Z}^{2}$, we have $\varphi_{\otimes B}(f)(v)=1$ if and only if $v \in f^{-1}(1) \otimes B$ is called the morphological operator wrt. \otimes and B.

Non-linear operators

Binary image

f

Erosion

$\varphi_{\ominus B}(f)$

Non-linear operators

Binary image

f

Closing

$\varphi_{\bullet B}(f)$

Non-linear operators

Definition 5. For any $n_{0}, n_{1} \in \mathbb{N}$, the set $V=\left[n_{0}\right] \times\left[n_{1}\right]$ and the pixel grid graph $G=(V, E)$, an operator $\varphi: \mathbb{N}_{0}^{V} \rightarrow \mathbb{N}_{0}^{V}$ is called a (connected) components operator if for any digital image $f: V \rightarrow \mathbb{N}_{0}$ and any pixels $v, w \in V$, we have $\varphi(f)(v)=\varphi(f)(w)$ iff there exists a $v w$-path in G along which all pixels have the color zero.

Non-linear operators

Binary image

f

Connected component labeling

$\varphi(f)$

Non-linear operators

```
size t componentsImage(
    Marray<size_t> const & image,
    Marray<size_t> & components
) {
    components.resize({image.shape(0), image.shape(1)});
    PixelGridGraph pixelGridGraph({image.shape(0), image.shape(1)});
    size_t component = 0;
    stac\overline{k}<size t> stack;
    for(size_t v = 0; v < pixelGridGraph.number0fVertices(); ++v) {
        Pixel pixel = pixelGridGraph.coordinate(v);
        if(image(pixel[0], pixel[1]) == 0
        && components(pixel[0], pixel[1]) == 0) {
            ++component;
            components(pixel[0], pixel[1]) = component;
            stack.push(v);
            while(!stack.empty()) {
                size_t const v = stack.top();
                stack.pop();
                for(auto it = pixelGridGraph.verticesFromVertexBegin(v);
                it != pixelGridGraph.verticesFromVertexEnd(v); ++it) {
                        Pixel pixel = it.coordinate();
                        if(image(pixel[0], pixel[1]) == 0
                && components(pixel[0], pixel[1]) == 0) {
                    components(pixel[0], pixel[1]) = component;
                    stack.push(*it);
                    }
                }
            }
        }
    }
    return component; // number of components
}
```

Non-linear operators

Definition 6. For any $n_{0}, n_{1} \in \mathbb{N}$, the set $V=\left[n_{0}\right] \times\left[n_{1}\right]$ and the pixel grid graph $G=(V, E)$, the distance operator $\varphi: \mathbb{N}_{0}^{V} \rightarrow \mathbb{N}_{0}^{V}$ is such that for any digital image $f: V \rightarrow \mathbb{N}_{0}$ and any pixel $v \in V$, the number $\varphi(f)(v)$ is the minimum distance in the pixel grid graph from v to a pixel w with $f(w)=1$.

Non-linear operators

Binary image

f

Distance image

$\varphi(f)$

Non-linear operators

```
size_t distanceImage(
    Marray<size_t> const & image,
    Marray<size_t> & distances
) {
    distances.resize({image.shape(0), image.shape(1)}, 0);
    GridGraph pixelGridGraph({image.shape(0), image.shape(1)});
    size_t distance = 0;
    array<stack<size_t>, 2> stacks;
    for(size t v = 0; v < pixelGridGraph.numberOfVertices(); ++v) {
        Pixel̄ pixel = pixelGridGraph.coordinates(v);
        if(image(pixel[0], pixel[1]) != 0)
            stacks[0].push(v);
    }
    ++distance;
    for(;;) {
        auto & stack = stacks[(distance - 1) % 2];
        if(stack.empty())
            return distance - 1; // maximal distance
        while(!stack.empty()) {
            size_t const v = stack.top();
            stack.pop();
            for(auto it = pixelGridGraph.verticesFromVertexBegin(v);
            it != pixelGridGraph.verticesFromVertexEnd(v) ; ++it) {
                Pixel pixel = it.coordinate();
                if(image(pixel[0], pixel[1]) == 0
                && distances(pixel[0], pixel[1]) == 0) {
                    distances(pixel[0], pixel[1]) = distance;
                    stacks[distance % 2].push(*it);
            }
            }
        }
        ++distance;
    }
34
```

Non-linear operators

For any set V of pixels and neighborhood function $N: V \rightarrow 2^{V}$, non-maximum suppression is the operator $\varphi_{\mathrm{NMS}}: \mathbb{R}^{V} \rightarrow \mathbb{R}^{V}$ such that for each digital image $f: V \rightarrow \mathbb{R}$ and all pixels $v \in V$:

$$
\varphi_{\mathrm{NMS}}(f)(v)= \begin{cases}f(v) & \text { if } f(v)=\max f(N(v)) \tag{11}\\ 0 & \text { otherwise }\end{cases}
$$

