Computer Vision I

Bjoern Andres, Holger Heidrich

Machine Learning for Computer Vision TU Dresden

Winter Term 2022/2023

Definition 1. Let $n_0, n_1 \in \mathbb{N}$, let $V = [n_0] \times [n_1]$ and let $C \subseteq \mathbb{R}$. Given

- a metric $d_s: V \times V \to \mathbb{R}^+_0$ and a decreasing $w_s: \mathbb{R}^+_0 \to [0, 1]$
- ▶ a metric $d_c: C \times C \to \mathbb{R}^+_0$ and a decreasing $w_c: \mathbb{R}^+_0 \to [0, 1]$
- ▶ a $N: V \to 2^V$ that defines for every pixel $v \in V$ a set $N(v) \subseteq V$ called the spatial neighborhood of v
- the $\nu : C^V \to \mathbb{R}^V$, called **normalization**, such that for any digital image $f : V \to C$ and any pixel $v \in V$:

$$\nu(f)(v) = \sum_{v' \in N(v)} w_s(d_s(v, v')) w_c(d_c(f(v), f(v'))) , \qquad (1)$$

the bilateral filter w.r.t. d_s, w_s, d_c, w_c and N is the $\beta : C^V \to (\mathbb{R}C)^V$ such that for any digital image $f : V \to C$ and any pixel $v \in V$:

$$\beta(f)(v) = \frac{1}{\nu(f)(v)} \sum_{v' \in N(v)} w_s(d_s(v, v')) w_c(d_c(f(v), f(v'))) f(v')$$
 (2)

Example.

• $d_s(v,v') = ||v - v'||_2$ and, for a filter parameter $\sigma_s > 0$:

$$w_s(x) = \frac{1}{\sigma_s \sqrt{2\pi}} \exp\left(-\frac{x^2}{2\sigma_s^2}\right)$$
(3)

▶ $d_c(g,g') = |g - g'|$ and, for a filter parameter $\sigma_c > 0$:

$$w_{c}(x) = \frac{1}{1 + \frac{x^{2}}{\sigma_{c}^{2}}}$$
(4)

• for a filter parameter $n \in \mathbb{R}_0^+$:

$$N(v) = \{ v' \in V \,|\, d_s(v, v') \le n \}$$
(5)

Suggested self-study:

- Implement a bilateral filter for gray-scale images
- Apply your implementation to a digital image
- \blacktriangleright Try different metrics d_s, d_r and weighting functions w_s, w_r
- ► Try iterating bilateral filtering
- ► Share and discuss your implementations, outputs and findings via OPAL

Advanced self-study:

- ► Define, implement and apply bilateral filtering for color images
- ► Share and discuss your implementations, outputs and findings via OPAL

Definition 2. Let $n_0, n_1 \in \mathbb{N}$, let $V = [n_0] \times [n_1]$, let $C \subseteq \mathbb{R}$ and let $N: V \to 2^V$ define for every pixel $v \in V$ a set $N(v) \subseteq V$ called the **spatial neighborhood** of v. The **median operator** wrt. N is the function $M: C^V \to C^V$ such that for any $f: V \to C$ and any $v \in V$:

$$M(f)(v) = \text{median } f(N(v)) \tag{6}$$

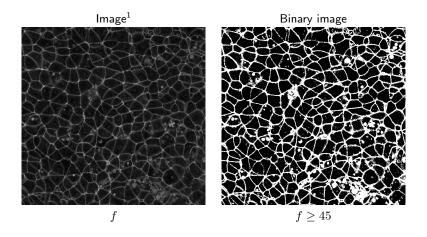
Noisy image

Filtered image

M(f)

Morphological operators

- ▶ We may identify any **binary** infinite digital image $f: \mathbb{Z}^2 \to \{0, 1\}$ with its support set $f^{-1}(1) = \{v \in \mathbb{Z}^2 \mid f(v) = 1\}.$
- This allows us to apply operations from the field of binary mathematical morphology to binary infinite digital images.



 $^{^1\}text{By}$ courtesy of Stephan Grill and his lab at the MPI of Molecular Cell Biology and Genetics. \$8/20\$

Definition 3. For any $A, B \subseteq \mathbb{Z}^2$, we define

$$A \ominus B := \{ v \in \mathbb{Z}^2 \mid B + v \subseteq A \}$$
(7)

$$A \oplus B := \{ v \in \mathbb{Z}^2 \mid -B + v \cap A \neq \emptyset \}$$
(8)

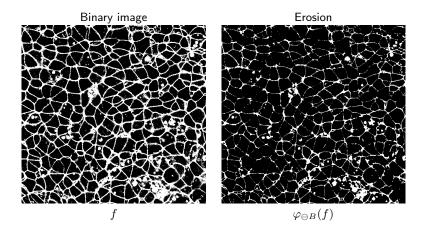
and call these operations **erosion** and **dilation**. Moreover, we call the operations

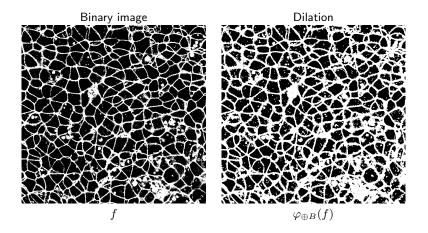
$$A \circ B := (A \ominus B) \oplus B \tag{9}$$

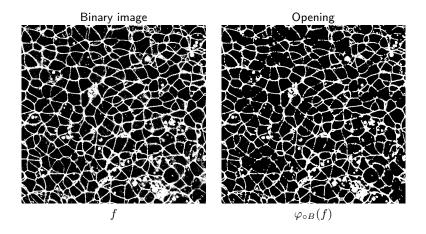
$$A \bullet B := (A \oplus B) \ominus B \tag{10}$$

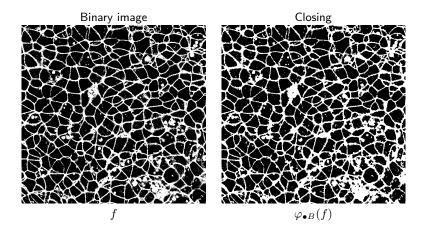
opening and closing.

Definition 4. For any (typically small) support set *B* called a **structuring** element and any morphological operation \otimes , the operator $\varphi_{\otimes B} \colon \{0,1\}^{\mathbb{Z} \times \mathbb{Z}} \to \{0,1\}^{\mathbb{Z} \times \mathbb{Z}}$ such that for any (infinite binary digital image) $f \colon \mathbb{Z}^2 \to \{0,1\}$ and any (pixel) $v \in \mathbb{Z}^2$, we have $\varphi_{\otimes B}(f)(v) = 1$ if and only if $v \in f^{-1}(1) \otimes B$ is called the **morphological operator** wrt. \otimes and *B*.

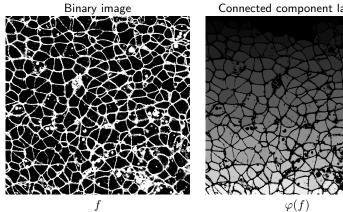








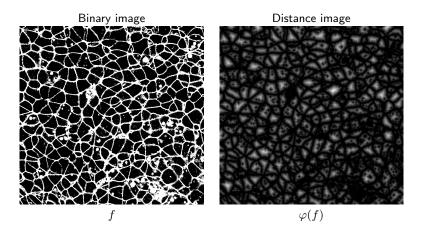
Definition 5. For any $n_0, n_1 \in \mathbb{N}$, the set $V = [n_0] \times [n_1]$ and the pixel grid graph G = (V, E), an operator $\varphi \colon \mathbb{N}_0^V \to \mathbb{N}_0^V$ is called a **(connected)** components operator if for any digital image $f \colon V \to \mathbb{N}_0$ and any pixels $v, w \in V$, we have $\varphi(f)(v) = \varphi(f)(w)$ iff there exists a vw-path in G along which all pixels have the color zero.



Connected component labeling

```
size t componentsImage(
   Marrav<size t> const & image.
   Marrav<size t> & components
    components.resize({image.shape(0), image.shape(1)});
    PixelGridGraph pixelGridGraph({image.shape(0), image.shape(1)});
    size t component = 0;
    stack<size t> stack;
    for(size t v = 0; v < pixelGridGraph.numberOfVertices(); ++v) {</pre>
        Pixel pixel = pixelGridGraph.coordinate(v);
        if(image(pixel[0], pixel[1]) == 0
        && components(pixel[0], pixel[1]) == 0) {
            ++component:
            components(pixel[0], pixel[1]) = component;
            stack.push(v);
            while(!stack.empty()) {
                size t const v = stack.top();
                stack.pop();
                for(auto it = pixelGridGraph.verticesFromVertexBegin(v);
                it != pixelGridGraph.verticesFromVertexEnd(v): ++it) {
                    Pixel pixel = it.coordinate():
                    if(image(pixel[0], pixel[1]) == 0
                    && components(pixel[0], pixel[1]) == 0) {
                        components(pixel[0], pixel[1]) = component;
                        stack.push(*it);
    return component: // number of components
```

Definition 6. For any $n_0, n_1 \in \mathbb{N}$, the set $V = [n_0] \times [n_1]$ and the pixel grid graph G = (V, E), the **distance operator** $\varphi \colon \mathbb{N}_0^V \to \mathbb{N}_0^V$ is such that for any digital image $f \colon V \to \mathbb{N}_0$ and any pixel $v \in V$, the number $\varphi(f)(v)$ is the minimum distance in the pixel grid graph from v to a pixel w with f(w) = 1.



```
1 size t distanceImage(
      Marrav<size t> const & image.
      Marrav<size t> & distances
 4) {
      distances.resize({image.shape(0), image.shape(1)}, 0);
 6
      GridGraph pixelGridGraph({image.shape(0), image.shape(1)});
      size t distance = 0:
 8
      array<stack<size t>, 2> stacks;
 9
      for(size t v = 0; v < pixelGridGraph.numberOfVertices(); ++v) {
          Pixel pixel = pixelGridGraph.coordinates(v);
          if(image(pixel[0], pixel[1]) != 0)
               stacks[0].push(v);
14
      ++distance;
      for(;;) {
16
          auto & stack = stacks[(distance - 1) % 2];
          if(stack.empty())
18
               return distance - 1; // maximal distance
19
          while(!stack.empty()) {
               size t const v = stack.top():
               stack.pop();
               for(auto it = pixelGridGraph.verticesFromVertexBegin(v);
23
24
25
               it != pixelGridGraph.verticesFromVertexEnd(v): ++it) {
                  Pixel pixel = it.coordinate():
                  if(image(pixel[0], pixel[1]) == 0
                  && distances(pixel[0], pixel[1]) == 0) {
                       distances(pixel[0], pixel[1]) = distance;
                       stacks[distance % 2].push(*it);
30
31
32
          ++distance;
34 }
```

For any set V of pixels and neighborhood function $N: V \to 2^V$, non-maximum suppression is the operator $\varphi_{\text{NMS}}: \mathbb{R}^V \to \mathbb{R}^V$ such that for each digital image $f: V \to \mathbb{R}$ and all pixels $v \in V$:

$$\varphi_{\text{NMS}}(f)(v) = \begin{cases} f(v) & \text{if } f(v) = \max f(N(v)) \\ 0 & \text{otherwise} \end{cases}$$
(11)