Computer Vision I

Bjoern Andres, Holger Heidrich

Machine Learning for Computer Vision
TU Dresden

Winter Term 2022/2023

Edge and corner detection

Edge detection ${ }^{1}$

${ }^{1}$ https://en.wikipedia.org/wiki/Canny_edge_detector

Edge and corner detection
Canny's edge detection algorithm ${ }^{1}$ has four steps

1. Gradient computation from digital image $f: V \rightarrow \mathbb{R}$:

$$
\begin{array}{ll}
g=\sqrt{\partial_{0} f+\partial_{1} f} & \text { std: :hypot in } \mathrm{C}++ \\
\alpha=\operatorname{atan} 2\left(\partial_{1} f, \partial_{0} f\right) & \text { std: }: \text { atan2 in } \mathrm{C}++
\end{array}
$$

2. Directional non-maximum suppression of g :

3	2	1
0		0
1	2	3

3. Double thresholding with $\theta_{0}, \theta_{1} \in \mathbb{R}_{0}^{+}$such that $\theta_{0} \leq \theta_{1}$: A (any) pixel $v \in V$ is taken considered to be a strong edge pixel iff $\theta_{1} \leq g(v)$ and is taken to be a weak edge pixel iff $\theta_{0} \leq g(v)<\theta_{1}$.
4. Weak edge classification: A (any) pixel $v \in V$ is taken to be an edge pixel iff (i) v is a strong edge pixel, or (ii) v is a weak edge pixel and there is a strong edge pixel in the 8 -neighborhood of v.
[^0]Edge and corner detection

Corner detection ${ }^{1}$

Edge and corner detection

Definition 1. Let $n_{0}, n_{1} \in \mathbb{N}$, let $V=\left[n_{0}\right] \times\left[n_{1}\right]$, let $f: V \rightarrow \mathbb{R}$ a digital image, let $\partial_{0}, \partial_{1}$ be discrete derivative operators, and let $N: V \rightarrow \mathbb{R}^{V}$.
For each $v \in V$:

- Let $A(v)$ be the $|N(v)| \times 2$-matrix such that for every $w \in N(v)$, we have

$$
\begin{equation*}
A_{w} \cdot(v)=\left(\left(\partial_{0} f\right)(w),\left(\partial_{1} f\right)(w)\right) . \tag{3}
\end{equation*}
$$

- Let $k_{v}: N(v) \rightarrow \mathbb{R}_{0}^{+}$such that $\sum_{w \in N(v)} k_{v}(w)=1$.
- Define the structure tensor of f at v wrt. k_{v} as the 2×2-matrix

$$
\begin{align*}
S_{k}(f)(v) & :=\sum_{w \in N(v)} k_{v}(w) A_{w}^{T} \cdot(v) A_{w} \cdot(v) \tag{4}\\
& =\sum_{w \in N(v)} k_{v}(w)\left(\begin{array}{cc}
\left(\partial_{0} f\right)^{2}(w) & \left(\partial_{0} f\right)(w)\left(\partial_{1} f\right)(w) \\
\left(\partial_{0} f\right)(w)\left(\partial_{1} f\right)(w) & \left(\partial_{1} f\right)^{2}(w)
\end{array}\right) \tag{5}
\end{align*}
$$

Edge and corner detection
Remark 1. Fix a direction by choosing $r \in \mathbb{R}^{2}$ with $|r|=1$ and consider the k_{v}-weighted squared projection of the gradient of the digital image:

$$
\begin{align*}
P_{r}(v) & =\sum_{w \in N(v)} k_{v}(w)\left|A_{w \cdot}(v) r\right|^{2} \tag{6}\\
& =\sum_{w \in N(v)} k_{v}(w) r^{T} A_{w \cdot}^{T} \cdot(v) A_{w \cdot}(v) r \tag{7}\\
& =r^{T}\left(\sum_{w \in N(v)} k_{v}(w) A_{w \cdot}^{T} \cdot(v) A_{w \cdot} \cdot(v)\right) r \tag{8}\\
& =r^{T} S(v) r \tag{9}
\end{align*}
$$

With the spectral decomposition

$$
\begin{equation*}
S(v)=\sigma_{1}(v) s_{1}(v) s_{1}^{T}(v)+\sigma_{2}(v) s_{2}(v) s_{2}^{T}(v) \tag{10}
\end{equation*}
$$

we obtain

$$
\begin{align*}
P_{r}(v) & =r^{T}\left(\sigma_{1}(v) s_{1}(v) s_{1}^{T}(v)+\sigma_{2}(v) s_{2}(v) s_{2}^{T}(v)\right) r \tag{11}\\
& =\sigma_{1}(v)\left|s_{1}(v) \cdot r\right|^{2}+\sigma_{2}(v)\left|s_{2}(v) \cdot r\right|^{2} \tag{12}
\end{align*}
$$

Edge and corner detection

Remark 2.

- If $\sigma_{1}=\sigma_{2}=0$, we have $P_{r}(v)=0$ for any direction r. I.e. the image is constant.
- If $\sigma_{1}>0$ and $\sigma_{2}=0$, we can choose a direction r such that $P_{r}(v)=0$. I.e. the gradient of the image is non-zero and constant.
- If $\sigma_{1}, \sigma_{2}>0$, we cannot choose r such that $P_{r}(v)=0$. I.e. the gradient of the image varies across $N(v)$.

Edge and corner detection

Definition 2. Let V the set of pixels of a digital image, let $S: V \rightarrow \mathbb{R}^{2 \times 2}$ such that for any $v \in V, S(v)$ is the structure tensor of the image at pixel v, and let $\sigma_{1}(v) \geq \sigma_{2}(v) \geq 0$ be the eigenvalues of $S(v)$. Harris' corner detector ${ }^{2}$ wrt. a neighborhood function $N: V \rightarrow 2^{V}$ refers to the function $\varphi_{\mathrm{NMS}} \circ \sigma_{2}$.

[^1]
[^0]: ${ }^{1}$ J. Canny. A Computational Approach To Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6):679-698, 1986

[^1]: ${ }^{2}$ C. Harris and M. Stephens. A Combined Corner and Edge Detector. Alvey Vision Conference. Vol. 15. 1988

