Computer Vision I

Bjoern Andres, Holger Heidrich

Machine Learning for Computer Vision TU Dresden

Winter Term 2022/2023

¹https://en.wikipedia.org/wiki/Canny_edge_detector

Canny's edge detection $algorithm^1$ has four steps

1. Gradient computation from digital image $f \colon V \to \mathbb{R}$:

$$g = \sqrt{\partial_0 f + \partial_1 f} \qquad \text{std::hypot in C++} \qquad (1)$$

$$\alpha = \operatorname{atan2}(\partial_1 f, \partial_0 f) \qquad \text{std::atan2 in C++} \qquad (2)$$

2. Directional non-maximum suppression of g:

- 3. Double thresholding with $\theta_0, \theta_1 \in \mathbb{R}^+_0$ such that $\theta_0 \leq \theta_1$: A (any) pixel $v \in V$ is taken considered to be a strong edge pixel iff $\theta_1 \leq g(v)$ and is taken to be a weak edge pixel iff $\theta_0 \leq g(v) < \theta_1$.
- 4. Weak edge classification: A (any) pixel $v \in V$ is taken to be an edge pixel iff (i) v is a strong edge pixel, or (ii) v is a weak edge pixel and there is a strong edge pixel in the 8-neighborhood of v.

 $^{^1 \}rm J.$ Canny. A Computational Approach To Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, $8(6):679-698,\,1986$

¹https://en.wikipedia.org/wiki/Corner_detection

Definition 1. Let $n_0, n_1 \in \mathbb{N}$, let $V = [n_0] \times [n_1]$, let $f: V \to \mathbb{R}$ a digital image, let ∂_0, ∂_1 be discrete derivative operators, and let $N: V \to \mathbb{R}^V$. For each $v \in V$:

 \blacktriangleright Let A(v) be the $|N(v)|\times 2\text{-matrix}$ such that for every $w\in N(v),$ we have

$$A_{w}(v) = \left((\partial_0 f)(w), (\partial_1 f)(w) \right) .$$
(3)

- Let $k_v \colon N(v) \to \mathbb{R}^+_0$ such that $\sum_{w \in N(v)} k_v(w) = 1$.
- Define the structure tensor of f at v wrt. k_v as the 2×2 -matrix

$$S_{k}(f)(v) := \sum_{w \in N(v)} k_{v}(w) A_{w}^{T}(v) A_{w}(v)$$

$$= \sum_{w \in N(v)} k_{v}(w) \begin{pmatrix} (\partial_{0}f)^{2}(w) & (\partial_{0}f)(w)(\partial_{1}f)(w) \\ (\partial_{0}f)(w)(\partial_{1}f)(w) & (\partial_{1}f)^{2}(w) \end{pmatrix} .$$
(5)

Remark 1. Fix a direction by choosing $r \in \mathbb{R}^2$ with |r| = 1 and consider the k_v -weighted squared projection of the gradient of the digital image:

$$P_r(v) = \sum_{w \in N(v)} k_v(w) |A_{w.}(v) r|^2$$
(6)

$$= \sum_{w \in N(v)} k_v(w) r^T A_{w}^T(v) A_{w}(v) r$$
(7)

$$= r^T \left(\sum_{w \in N(v)} k_v(w) A_{w.}^T(v) A_{w.}(v) \right) r$$
(8)

$$= r^T S(v) r \tag{9}$$

With the spectral decomposition

$$S(v) = \sigma_1(v)s_1(v)s_1^T(v) + \sigma_2(v)s_2(v)s_2^T(v)$$
(10)

we obtain

$$P_{r}(v) = r^{T} \left(\sigma_{1}(v) s_{1}(v) s_{1}^{T}(v) + \sigma_{2}(v) s_{2}(v) s_{2}^{T}(v) \right) r$$
(11)

$$= \sigma_1(v)|s_1(v) \cdot r|^2 + \sigma_2(v)|s_2(v) \cdot r|^2 .$$
(12)

Remark 2.

- If $\sigma_1 = \sigma_2 = 0$, we have $P_r(v) = 0$ for any direction r. I.e. the image is constant.
- If $\sigma_1 > 0$ and $\sigma_2 = 0$, we can choose a direction r such that $P_r(v) = 0$. I.e. the gradient of the image is non-zero and constant.
- If $\sigma_1, \sigma_2 > 0$, we cannot choose r such that $P_r(v) = 0$. I.e. the gradient of the image varies across N(v).

Definition 2. Let V the set of pixels of a digital image, let $S: V \to \mathbb{R}^{2\times 2}$ such that for any $v \in V$, S(v) is the structure tensor of the image at pixel v, and let $\sigma_1(v) \ge \sigma_2(v) \ge 0$ be the eigenvalues of S(v). Harris' corner detector² wrt. a neighborhood function $N: V \to 2^V$ refers to the function $\varphi_{\text{NMS}} \circ \sigma_2$.

 $^{^2\}mathsf{C}.$ Harris and M. Stephens. A Combined Corner and Edge Detector. Alvey Vision Conference. Vol. 15. 1988