Computer Vision I

Bjoern Andres, Holger Heidrich

 $\begin{array}{c} \text{Machine Learning for Computer Vision} \\ \text{TU Dresden} \end{array}$

Winter Term 2022/2023

¹By courtesy of Stephan Grill and his lab at the MPI of Molecular Cell Biology and Genetics.

Suppose we can construct a function $c\colon V\to \mathbb{R}$ wrt. a ditial image $f\colon V\to C$ in such a way that for any pixel $v\in V$:

- $ightharpoonup c_v < 0$ if we consider $y_v = 1$ to be the right decision
- $c_v > 0$ if we consider $y_v = 0$ to be the right decision.

Definition 1. For any set V of pixels and any function $c\colon V\to \mathbb{R}$, the instance of the **trivial pixel classification problem** wrt. c has the form

$$\min_{y \in \{0,1\}^V} \sum_{v \in V} c_v \, y_v \tag{1}$$

In case the decision y_v for a pixel v depends on the color f(v) of that pixel only, we can in principle

- ightharpoonup construct a function $\xi\colon C\to\mathbb{R}$
- define $c_v = \xi(f(v))$ for any $v \in V$.

In practice, this task is supported by carefully designed GUIs.

In case the decision y_v for a pixel v depends on the colors of all pixels in a neighborhood $N(v)\subseteq V$ around v, we can in principle

- ▶ construct, for any pixel v, a function $\xi_v : C^{N(v)} \to \mathbb{R}$ that assigns a real number $\xi_v(f')$ to any coloring $f' : N(v) \to C$ of the neighborhood N(v) of v
- define $c_v = \xi(f_{N(v)})$ for any $v \in V$.

In practice, this task is typically addressed by **machine learning**.

- In practice, solutions to the trivial pixel classification problem can be improved by exploiting prior knowledge about feasible combinations of decisions.
- Next, we consider prior knowledge saying that decisions at neighboring pixels $v, w \in V$ are more likely to be equal $(y_v = v_w)$ than unequal $(y_v \neq y_w)$.

Definition 2. For any pixel grid graph (V,E), any $c\colon V\to\mathbb{R}$ and any $c'\colon E\to\mathbb{R}^+_0$, the instance of the **smooth pixel classification problem** wrt. c and c' has the form

$$\min_{y \in \{0,1\}^V} \sum_{v \in V} c_v y_v + \sum_{\{v,w\} \in E} c'_{\{v,w\}} |y_v - y_w|$$

$$\varphi(y)$$
(2)

A naïve algorithm for this problem is local search with a transformation $T_v\colon\{0,1\}^V\to\{0,1\}^V$ that changes the decision for a single pixel, i.e., for any $y\colon V\to\{0,1\}$ and any $v,w\in V$:

$$T_v(y)(w) = \begin{cases} 1 - y_w & \text{if } w = v \\ y_w & \text{otherwise} \end{cases}$$
.

```
\begin{split} \text{Initially, } y \colon V &\to \{0,1\} \text{ and } W = V \\ \text{while } W \neq \emptyset \\ W' &:= \emptyset \\ \text{for each } v \in W \\ \text{if } \varphi(T_v(y)) - \varphi(y) < 0 \\ y &:= T_v(y) \\ W' &:= W' \cup \{w \in V \,|\, \{v,w\} \in E\} \\ W &:= W' \end{split}
```

- So far, we have studied a local search algorithm for the smooth pixel classification problem.
- ▶ On the one hand, this algorithm is easy to implement and has straight-forward generalizations, e.g., to the case of more than two classes.
- On the other hand, it does not necessarily solve smooth pixel classification with two classes to optimality.
- Next, we will reduce the smooth pixel classification problem with two classes to the well-known minimum st-cut problem that can be solved exactly and efficiently.
- ► The notes are organized as follows
 - ▶ Definition of the minimum *st*-cut problem
 - Submodularity
 - ► Reduction of the smooth pixel classification problem

Definition 3. A 5-tuple $N=(V,E,s,t,\gamma)$ is called a **network** iff (V,E) is a directed graph and $s\in V$ and $t\in V$ and $s\neq t$ and $\gamma:E\to\mathbb{R}^+_0$.

The nodes s and t are called the **source** and the **sink** of N, respectively.

For any edge $e \in E$, γ_e is called the **capacity** of e in N.

Definition 4. Let (V, E) be a directed graph. Let $s \in V$ and $t \in V$ and $s \neq t$.

- ▶ $X \subseteq V$ is called an st-cutset of (V, E) iff $s \in X$ and $t \notin X$.
- ▶ $Y \subseteq E$ is called an st-cut of (V, E) iff there exists an st-cutset X such that $Y = \{vw \in E \mid v \in X \land w \notin X\}$.

Definition 5. The instance of the **minimum** st-cut problem wrt. a network $N=(V,E,s,t,\gamma)$ is to

$$\min_{x \in \{0,1\}^V} \quad \sum_{vw \in E} x_v (1 - x_w) \gamma_{vw} \tag{3}$$

subject to
$$x_s = 1$$
 (4)

$$x_t = 0 (5)$$

Definition 6. A **lattice** (S, \preceq) is a set S, equipped with a partial order \preceq , such that any two elements of S have an infimum and a supremum wrt. \preceq .

Example. $(\{0,1\}^2, \preceq)$ with $\preceq := \{(s,t) \in S \times S \mid s_1 \leq t_1 \land s_2 \leq t_2\}.$

For any
$$s,t\in\{0,1\}^2$$
,
$$\sup(s,t)=(\max\{s_1,t_1\},\max\{s_2,t_2\})$$

$$\inf(s,t)=(\min\{s_1,t_1\},\min\{s_2,t_2\})$$

Definition 7. A function $f:S \to \mathbb{R}$ is called **submodular** wrt. a lattice (S, \preceq) iff

$$\forall s,t \in S \qquad f(\inf(s,t)) + f(\sup(s,t)) \le f(s) + f(t) \ . \tag{6}$$

Lemma 1. The sum of two submodular functions is submodular.

Lemma 2. For any $f: \{0,1\}^2 \to \mathbb{R}$, the following statements are equivalent.

- 1. f is is submodular wrt. the the lattice $(\{0,1\}^2,\preceq)$
- 2. $f(0,0) + f(1,1) \le f(1,0) + f(0,1)$
- 3. The unique form

$$c_{\emptyset} + c_{\{1\}}x_1 + c_{\{2\}}x_2 + c_{\{1,2\}}x_1x_2$$

of f is such that $c_{\{1,2\}} \leq 0.$

Proof.

► $f(0,0) + f(1,1) \le f(1,0) + f(0,1)$ is the only condition in

$$\forall s, t \in S$$
 $f(\inf(s,t)) + f(\sup(s,t)) \le f(s) + f(t)$

which is not generally true. Thus, (1.) is equivalent to (2.).

► We have

$$\begin{split} f(0,0) &= c_{\emptyset} \\ f(1,0) &= c_{\emptyset} + c_{\{1\}} \\ f(0,1) &= c_{\emptyset} &+ c_{\{2\}} \\ f(1,1) &= c_{\emptyset} + c_{\{1\}} + c_{\{2\}} + c_{\{1,2\}} \ . \end{split}$$

Therefore,

$$c_{\{1,2\}} = f(1,1) - f(1,0) - f(0,1) + f(0,0)$$

and thus, (2.) is equivalent to (3.).

Lemma 3. For every $f:\{0,1\}^2\to\mathbb{R}$, there exist unique $a_0\in\mathbb{R}$ and $a_1,a_{\bar{1}},a_2,a_{\bar{2}},a_{12},a_{\bar{1}2}\in\mathbb{R}^+_0$ such that

$$a_1 a_{\bar{1}} = a_2 a_{\bar{2}} = a_{12} a_{\bar{1}2} = 0 \tag{7}$$

and

$$\forall x \in \{0,1\}^2 \quad f(x) = a_0$$

$$+ a_1 x_1 + a_{\bar{1}} (1 - x_1)$$

$$+ a_2 x_2 + a_{\bar{2}} (1 - x_2)$$

$$+ a_{12} x_1 x_2 + a_{\bar{1}2} (1 - x_1) x_2 . \tag{8}$$

Proof.

► Comparison of (8) with the unique form

$$c_{\emptyset} + c_{\{1\}}x_1 + c_{\{2\}}x_2 + c_{\{1,2\}}x_1x_2$$

yields

$$a_{0} + a_{\bar{1}} + a_{\bar{2}} = c_{\emptyset}$$

$$a_{1} - a_{\bar{1}} = c_{\{1\}}$$

$$a_{2} - a_{\bar{2}} + a_{\bar{1}2} = c_{\{2\}}$$

$$a_{12} - a_{\bar{1}2} = c_{\{1,2\}}$$
(9)

 \blacktriangleright By these equations (from bottom to top), (7) and c define a uniquely.

Lemma 4. For every submodular $f:\{0,1\}^2\to\mathbb{R}$ and its unique coefficient $a_0\in\mathbb{R}$ from Lemma 3,

$$\min_{x \in \{0,1\}^2} f_x - a_0 \tag{10}$$

is equal to the weight of a $minimum\ st$ -cut in the graph below whose edge weights are the (unique, non-negative) coefficients from Lemma 3.

Moreover, f is minimal at $\hat{x} \in \{0,1\}^2$ iff $\{j \in \{1,2\} \mid \hat{x}_j = 0\}$ is a **minimum** st-cutset of the above graph.

Proof.

- ▶ Submodularity of f implies $a_{12} = 0$ in (9), by Lemma 2 and (7).
- ightharpoonup Comparison of the four possible minima of f,

$$f(0,0) = a_0 + a_{\bar{1}} + a_{\bar{2}}$$

$$f(1,0) = a_0 + a_1 + a_{\bar{2}}$$

$$f(0,1) = a_0 + a_{\bar{1}} + a_2 + a_{\bar{1}2}$$

$$f(1,1) = a_0 + a_1 + a_2 + a_{12}$$

with the four possible minimum cuts below proves the Lemma.

Definition 8. For any smooth pixel classification problem

$$\min_{y \in \{0,1\}^V} \quad \underbrace{\sum_{v \in V} c_v \, y_v + \sum_{\{v,w\} \in E} c'_{\{v,w\}} \, |y_v - y_w|}_{\varphi(y)} \tag{11}$$

the induced minimum st-cut problem is defined by the network (V', E', s, t, γ) such that $V' = V \cup \{s, t\}$,

$$E' = \{(s, v) \in V'^{2} \mid c_{v} > 0\} \cup \{(v, t) \in V'^{2} \mid c_{v} < 0\}$$
$$\cup \{(v, w) \in V'^{2} \mid \{v, w\} \in E\}$$
(12)

and $\gamma \colon E' \to \mathbb{R}_0^+$ such that

$$\forall (s, v) \in E' \colon \quad \gamma_{(s,v)} = c_v \tag{13}$$

$$\forall (v,t) \in E' : \quad \gamma_{(v,t)} = -c_v \tag{14}$$

$$\forall \{v, w\} \in E: \quad \gamma_{(v, w)} = \gamma_{(w, v)} = c'_{\{v, w\}} . \tag{15}$$

Lemma 5. For any smooth pixel classification problem wrt. a pixel grid graph G=(V,E) and the induced minimum st-cut problem with the network $(V',E',s,t,\gamma),\ \hat{y}:V\to\{0,1\}$ is an optimal pixel classification iff $\{v\in V\mid \hat{y}_v=0\}$ is an optimal st-cutset.

Proof (sketch). The function φ is submodular, by Lemma 1 and c'>0.

The statement holds by Lemma 3 and the fact that for all $y \in \{0,1\}^V$:

$$\varphi(y) = \sum_{v \in V} c_v y_v + \sum_{\{v,w\} \in E} c'_{\{v,w\}} (y_v (1 - y_w) + (1 - y_v) y_w) .$$