Computer Vision I

Bjoern Andres, Holger Heidrich

Machine Learning for Computer Vision TU Dresden

Winter Term 2022/2023

Pixel classification

Pixel classification

Suppose we can construct a function $c: V \rightarrow \mathbb{R}$ wrt. a ditial image $f: V \rightarrow C$ in such a way that for any pixel $v \in V$:

- $c_{v}<0$ if we consider $y_{v}=1$ to be the right decision
- $c_{v}>0$ if we consider $y_{v}=0$ to be the right decision.

Definition 1. For any set V of pixels and any function $c: V \rightarrow \mathbb{R}$, the instance of the trivial pixel classification problem wrt. c has the form

$$
\begin{equation*}
\min _{y \in\{0,1\}^{V}} \sum_{v \in V} c_{v} y_{v} \tag{1}
\end{equation*}
$$

Pixel classification

In case the decision y_{v} for a pixel v depends on the color $f(v)$ of that pixel only, we can in principle

- construct a function $\xi: C \rightarrow \mathbb{R}$
- define $c_{v}=\xi(f(v))$ for any $v \in V$.

In practice, this task is supported by carefully designed GUIs.

In case the decision y_{v} for a pixel v depends on the colors of all pixels in a neighborhood $N(v) \subseteq V$ around v, we can in principle

- construct, for any pixel v, a function $\xi_{v}: C^{N(v)} \rightarrow \mathbb{R}$ that assigns a real number $\xi_{v}\left(f^{\prime}\right)$ to any coloring $f^{\prime}: N(v) \rightarrow C$ of the neighborhood $N(v)$ of v
- define $c_{v}=\xi\left(f_{N(v)}\right)$ for any $v \in V$.

In practice, this task is typically addressed by machine learning.

Pixel classification

- In practice, solutions to the trivial pixel classification problem can be improved by exploiting prior knowledge about feasible combinations of decisions.
- Next, we consider prior knowledge saying that decisions at neighboring pixels $v, w \in V$ are more likely to be equal $\left(y_{v}=v_{w}\right)$ than unequal $\left(y_{v} \neq y_{w}\right)$.

Pixel classification

Definition 2. For any pixel grid graph (V, E), any $c: V \rightarrow \mathbb{R}$ and any $c^{\prime}: E \rightarrow \mathbb{R}_{0}^{+}$, the instance of the smooth pixel classification problem wrt. c and c^{\prime} has the form

$$
\begin{equation*}
\min _{y \in\{0,1\} V} \underbrace{\sum_{v \in V} c_{v} y_{v}+\sum_{\{v, w\} \in E} c_{\{v, w\}}^{\prime}\left|y_{v}-y_{w}\right|}_{\varphi(y)} \tag{2}
\end{equation*}
$$

Pixel classification

A naïve algorithm for this problem is local search with a transformation $T_{v}:\{0,1\}^{V} \rightarrow\{0,1\}^{V}$ that changes the decision for a single pixel, i.e., for any $y: V \rightarrow\{0,1\}$ and any $v, w \in V$:

$$
T_{v}(y)(w)=\left\{\begin{array}{ll}
1-y_{w} & \text { if } w=v \\
y_{w} & \text { otherwise }
\end{array} .\right.
$$

Initially, $y: V \rightarrow\{0,1\}$ and $W=V$
while $W \neq \emptyset$

$$
\begin{aligned}
& W^{\prime}:=\emptyset \\
& \text { for each } v \in W \\
& \quad \text { if } \varphi\left(T_{v}(y)\right)-\varphi(y)<0 \\
& \quad y:=T_{v}(y) \\
& \quad W^{\prime}:=W^{\prime} \cup\{w \in V \mid\{v, w\} \in E\} \\
& W:=W^{\prime}
\end{aligned}
$$

Pixel classification

- So far, we have studied a local search algorithm for the smooth pixel classification problem.
- On the one hand, this algorithm is easy to implement and has straight-forward generalizations, e.g., to the case of more than two classes.
- On the other hand, it does not necessarily solve smooth pixel classification with two classes to optimality.
- Next, we will reduce the smooth pixel classification problem with two classes to the well-known minimum st-cut problem that can be solved exactly and efficiently.
- The notes are organized as follows
- Definition of the minimum st-cut problem
- Submodularity
- Reduction of the smooth pixel classification problem

Definition 3. A 5-tuple $N=(V, E, s, t, \gamma)$ is called a network iff (V, E) is a directed graph and $s \in V$ and $t \in V$ and $s \neq t$ and $\gamma: E \rightarrow \mathbb{R}_{0}^{+}$.

The nodes s and t are called the source and the sink of N, respectively.
For any edge $e \in E, \gamma_{e}$ is called the capacity of e in N.

Definition 4. Let (V, E) be a directed graph. Let $s \in V$ and $t \in V$ and $s \neq t$.

- $X \subseteq V$ is called an st-cutset of (V, E) iff $s \in X$ and $t \notin X$.
- $Y \subseteq E$ is called an st-cut of (V, E) iff there exists an st-cutset X such that $Y=\{v w \in E \mid v \in X \wedge w \notin X\}$.

Definition 5. The instance of the minimum st-cut problem wrt. a network $N=(V, E, s, t, \gamma)$ is to

$$
\begin{align*}
\min _{x \in\{0,1\}^{V}} & \sum_{v w \in E} x_{v}\left(1-x_{w}\right) \gamma_{v w} \tag{3}\\
\text { subject to } & x_{s}=1 \tag{4}\\
& x_{t}=0 \tag{5}
\end{align*}
$$

Definition 6. A lattice (S, \preceq) is a set S, equipped with a partial order \preceq, such that any two elements of S have an infimum and a supremum wrt. \preceq.

Example. $\left(\{0,1\}^{2}, \preceq\right)$ with $\preceq:=\left\{(s, t) \in S \times S \mid s_{1} \leq t_{1} \wedge s_{2} \leq t_{2}\right\}$.

For any $s, t \in\{0,1\}^{2}$,

$$
\begin{aligned}
\sup (s, t) & =\left(\max \left\{s_{1}, t_{1}\right\}, \max \left\{s_{2}, t_{2}\right\}\right) \\
\inf (s, t) & =\left(\min \left\{s_{1}, t_{1}\right\}, \min \left\{s_{2}, t_{2}\right\}\right)
\end{aligned}
$$

Definition 7. A function $f: S \rightarrow \mathbb{R}$ is called submodular wrt. a lattice (S, \preceq) iff

$$
\begin{equation*}
\forall s, t \in S \quad f(\inf (s, t))+f(\sup (s, t)) \leq f(s)+f(t) \tag{6}
\end{equation*}
$$

Lemma 1. The sum of two submodular functions is submodular.

Lemma 2. For any $f:\{0,1\}^{2} \rightarrow \mathbb{R}$, the following statements are equivalent.

1. f is is submodular wrt. the the lattice $\left(\{0,1\}^{2}, \preceq\right)$
2. $f(0,0)+f(1,1) \leq f(1,0)+f(0,1)$
3. The unique form

$$
c_{\emptyset}+c_{\{1\}} x_{1}+c_{\{2\}} x_{2}+c_{\{1,2\}} x_{1} x_{2}
$$

of f is such that $c_{\{1,2\}} \leq 0$.

Proof.

- $f(0,0)+f(1,1) \leq f(1,0)+f(0,1)$ is the only condition in

$$
\forall s, t \in S \quad f(\inf (s, t))+f(\sup (s, t)) \leq f(s)+f(t)
$$

which is not generally true. Thus, (1.) is equivalent to (2.).

- We have

$$
\begin{aligned}
& f(0,0)=c_{\emptyset} \\
& f(1,0)=c_{\emptyset}+c_{\{1\}} \\
& f(0,1)=c_{\emptyset}+c_{\{2\}} \\
& f(1,1)=c_{\emptyset}+c_{\{1\}}+c_{\{2\}}+c_{\{1,2\}}
\end{aligned}
$$

Therefore,

$$
c_{\{1,2\}}=f(1,1)-f(1,0)-f(0,1)+f(0,0)
$$

and thus, (2.) is equivalent to (3.).

Lemma 3. For every $f:\{0,1\}^{2} \rightarrow \mathbb{R}$, there exist unique $a_{0} \in \mathbb{R}$ and $a_{1}, a_{\overline{1}}, a_{2}, a_{\overline{2}}, a_{12}, a_{\overline{1} 2} \in \mathbb{R}_{0}^{+}$such that

$$
\begin{equation*}
a_{1} a_{\overline{1}}=a_{2} a_{\overline{2}}=a_{12} a_{\overline{1} 2}=0 \tag{7}
\end{equation*}
$$

and

$$
\begin{align*}
\forall x \in\{0,1\}^{2} \quad f(x)= & a_{0} \\
& +a_{1} x_{1}+a_{\overline{1}}\left(1-x_{1}\right) \\
& +a_{2} x_{2}+a_{\overline{2}}\left(1-x_{2}\right) \\
& +a_{12} x_{1} x_{2}+a_{\overline{1} 2}\left(1-x_{1}\right) x_{2} \tag{8}
\end{align*}
$$

Proof.

- Comparison of (8) with the unique form

$$
c_{\emptyset}+c_{\{1\}} x_{1}+c_{\{2\}} x_{2}+c_{\{1,2\}} x_{1} x_{2}
$$

yields

$$
\begin{align*}
a_{0}+a_{\overline{1}}+a_{\overline{2}} & =c_{\emptyset} \\
a_{1}-a_{\overline{1}} & =c_{\{1\}} \\
a_{2}-a_{\overline{2}}+a_{\overline{1} 2} & =c_{\{2\}} \\
a_{12}-a_{\overline{1} 2} & =c_{\{1,2\}} \tag{9}
\end{align*}
$$

- By these equations (from bottom to top), (7) and c define a uniquely.

Lemma 4. For every submodular $f:\{0,1\}^{2} \rightarrow \mathbb{R}$ and its unique coefficient $a_{0} \in \mathbb{R}$ from Lemma 3,

$$
\begin{equation*}
\min _{x \in\{0,1\}^{2}} f_{x}-a_{0} \tag{10}
\end{equation*}
$$

is equal to the weight of a minimum st-cut in the graph below whose edge weights are the (unique, non-negative) coefficients from Lemma 3.

Moreover, f is minimal at $\hat{x} \in\{0,1\}^{2}$ iff $\left\{j \in\{1,2\} \mid \hat{x}_{j}=0\right\}$ is a minimum $s t$-cutset of the above graph.

Proof.

- Submodularity of f implies $a_{12}=0$ in (9), by Lemma 2 and (7).
- Comparison of the four possible minima of f,

$$
\begin{aligned}
& f(0,0)=a_{0}+a_{\overline{1}}+a_{\overline{2}} \\
& f(1,0)=a_{0}+a_{1}+a_{\overline{2}} \\
& f(0,1)=a_{0}+a_{\overline{1}}+a_{2}+a_{\overline{1} 2} \\
& f(1,1)=a_{0}+a_{1}+a_{2}+a_{12}
\end{aligned}
$$

with the four possible minimum cuts below proves the Lemma.

Definition 8. For any smooth pixel classification problem

$$
\begin{equation*}
\min _{y \in\{0,1\} V} \underbrace{\sum_{v \in V} c_{v} y_{v}+\sum_{\{v, w\} \in E} c_{\{v, w\}}^{\prime}\left|y_{v}-y_{w}\right|}_{\varphi(y)} \tag{11}
\end{equation*}
$$

the induced minimum $s t$-cut problem is defined by the network $\left(V^{\prime}, E^{\prime}, s, t, \gamma\right)$ such that $V^{\prime}=V \cup\{s, t\}$,

$$
\begin{align*}
E^{\prime}= & \left\{(s, v) \in V^{\prime 2} \mid c_{v}>0\right\} \cup\left\{(v, t) \in V^{\prime 2} \mid c_{v}<0\right\} \\
& \cup\left\{(v, w) \in V^{\prime 2} \mid\{v, w\} \in E\right\} \tag{12}
\end{align*}
$$

and $\gamma: E^{\prime} \rightarrow \mathbb{R}_{0}^{+}$such that

$$
\begin{array}{ll}
\forall(s, v) \in E^{\prime}: & \gamma_{(s, v)}=c_{v} \\
\forall(v, t) \in E^{\prime}: & \gamma_{(v, t)}=-c_{v} \\
\forall\{v, w\} \in E: & \gamma_{(v, w)}=\gamma_{(w, v)}=c_{\{v, w\}}^{\prime} \tag{15}
\end{array}
$$

Lemma 5. For any smooth pixel classification problem wrt. a pixel grid graph $G=(V, E)$ and the induced minimum st-cut problem with the network ($\left.V^{\prime}, E^{\prime}, s, t, \gamma\right), \hat{y}: V \rightarrow\{0,1\}$ is an optimal pixel classification iff $\left\{v \in V \mid \hat{y}_{v}=0\right\}$ is an optimal st-cutset.

Proof (sketch). The function φ is submodular, by Lemma 1 and $c^{\prime}>0$. The statement holds by Lemma 3 and the fact that for all $y \in\{0,1\}^{V}$:

$$
\varphi(y)=\sum_{v \in V} c_{v} y_{v}+\sum_{\{v, w\} \in E} c_{\{v, w\}}^{\prime}\left(y_{v}\left(1-y_{w}\right)+\left(1-y_{v}\right) y_{w}\right)
$$

