Machine Learning I

Bjoern Andres, Shengxian Zhao

Machine Learning for Computer Vision
TU Dresden

Winter Term 2022/2023

Welcome

- Online course consisting of
- Lectures in TRE/PHYS on Fri, 09:20-11:10
- Exercise groups starting October 26th:

Online	Wed, 09:20-11:10
In VMB/0302/U	Fri, 14:50-16:40
In VMB/0302/U	Fri, 16:40-18:30

- Self-study and moderated discussion in a forum
- Final examination (covering lectures and exercises)
- https://mlcv.inf.tu-dresden.de/courses/22-winter/ml1/index.html
- Registration:
- All participating students need to register through OPAL
- Those enrolled in the study program Computational Modeling and Simulation (CMS) need to register additionally via SELMA.
- Textbooks:
- Barber, Bayesian Reasoning and Machine Learning
- Bishop, Pattern Recognition and Machine Learning
- Shai, Understanding Machine Learning
- No recordings/reproductions of the lectures or exercises!

Machine Learning

Machine Learning is a branch of computer science devoted to the study and development of mathematical models and algorithms for understanding and interpreting data, as well as for deciding and acting wrt. data.

- Poses challenging problems
- Combines insights and methods from
- Mathematics (esp. optimization, probability theory, statistics)
- Computer Science (esp. algorithms, complexity, software engineering)
- Provides an opportunity for applying analytical and engineering skills
- Has impact on applications (medical, robotic, consumer)
- Grows dynamically
- Offers excellent career opportunities (esp. in tech companies and startups)

Machine Learning

Machine Learning is a branch of computer science devoted to the study and development of mathematical models and algorithms for understanding and interpreting data, as well as for deciding and acting wrt. data.

- Leading scholarly journal:
- Journal of Machine Learning Research (JMLR)
- Leading academic conferences:
- International Conference on Machine Learning (ICML)
- Neural Information Processing Systems (NeurIPS)
- International Conference on Learning Representations (ICLR)
- Closely related scientific communities:
- Learning theory (e.g. ALT, COLT)
- Artificial Intelligence (e.g. IJCAI, AAAI, UAI, AISTATS)

Contents

- Supervised learning
- Disjunctive normal forms
- Binary decision trees
- Linear functions
- Artificial neural networks
- Semi-supervised and unsupervised learning
- Partitioning
- Clustering
- Ordering
- Supervised structured learning
- Conditional graphical models
- Density estimation
- Embedding

Prerequisites

- Mathematics
- Linear algebra
- Multivariate calculus (basics)
- Probability theory (basics)
- Computer Science
- Algorithms and data structures (basics)
- Theoretical computer science (basics of complexity theory)

Notation

- We write "iff" as shorthand for "if and only if".

Notation

- We write "iff" as shorthand for "if and only if".
- For any finite set A, we denote by $|A|$ the number of elements of A.

Notation

- We write "iff" as shorthand for "if and only if".
- For any finite set A, we denote by $|A|$ the number of elements of A.
- For any set A, we denote by 2^{A} the power set of A.

Notation

- We write "iff" as shorthand for "if and only if".
- For any finite set A, we denote by $|A|$ the number of elements of A.
- For any set A, we denote by 2^{A} the power set of A.
- For any set A and any $m \in \mathbb{N}$, we denote by $\binom{A}{m}$ the set of all m-elementary subsets of A, i.e. $\binom{A}{m}=\left\{B \in 2^{A}:|B|=m\right\}$.

Notation

- We write "iff" as shorthand for "if and only if".
- For any finite set A, we denote by $|A|$ the number of elements of A.
- For any set A, we denote by 2^{A} the power set of A.
- For any set A and any $m \in \mathbb{N}$, we denote by $\binom{A}{m}$ the set of all m-elementary subsets of A, i.e. $\binom{A}{m}=\left\{B \in 2^{A}:|B|=m\right\}$.
- For any sets A, B, we denote by B^{A} the set of all maps from A to B

Notation

- We write "iff" as shorthand for "if and only if".
- For any finite set A, we denote by $|A|$ the number of elements of A.
- For any set A, we denote by 2^{A} the power set of A.
- For any set A and any $m \in \mathbb{N}$, we denote by $\binom{A}{m}$ the set of all m-elementary subsets of A, i.e. $\binom{A}{m}=\left\{B \in 2^{A}:|B|=m\right\}$.
- For any sets A, B, we denote by B^{A} the set of all maps from A to B
- For any map $f \in B^{A}$, any $a \in A$ and any $b \in B$, we may write $b=f(a)$ or $b=f_{a}$ instead of $(a, b) \in f$

Notation

- We write "iff" as shorthand for "if and only if".
- For any finite set A, we denote by $|A|$ the number of elements of A.
- For any set A, we denote by 2^{A} the power set of A.
- For any set A and any $m \in \mathbb{N}$, we denote by $\binom{A}{m}$ the set of all m-elementary subsets of A, i.e. $\binom{A}{m}=\left\{B \in 2^{A}:|B|=m\right\}$.
- For any sets A, B, we denote by B^{A} the set of all maps from A to B
- For any map $f \in B^{A}$, any $a \in A$ and any $b \in B$, we may write $b=f(a)$ or $b=f_{a}$ instead of $(a, b) \in f$
- Given any set J and, for any $j \in J$, a set S_{j}, we denote by $\prod_{j \in J} S_{j}$ the Cartesian product of the family $\left\{S_{j}\right\}_{j \in J}$, i.e.

$$
\begin{equation*}
\prod_{j \in J} S_{j}=\left\{f: J \rightarrow \bigcup_{j \in J} S_{j} \mid \forall j \in J: f(j) \in S_{j}\right\} \tag{1}
\end{equation*}
$$

Notation

- We write "iff" as shorthand for "if and only if".
- For any finite set A, we denote by $|A|$ the number of elements of A.
- For any set A, we denote by 2^{A} the power set of A.
- For any set A and any $m \in \mathbb{N}$, we denote by $\binom{A}{m}$ the set of all m-elementary subsets of A, i.e. $\binom{A}{m}=\left\{B \in 2^{A}:|B|=m\right\}$.
- For any sets A, B, we denote by B^{A} the set of all maps from A to B
- For any map $f \in B^{A}$, any $a \in A$ and any $b \in B$, we may write $b=f(a)$ or $b=f_{a}$ instead of $(a, b) \in f$
- Given any set J and, for any $j \in J$, a set S_{j}, we denote by $\prod_{j \in J} S_{j}$ the Cartesian product of the family $\left\{S_{j}\right\}_{j \in J}$, i.e.

$$
\begin{equation*}
\prod_{j \in J} S_{j}=\left\{f: J \rightarrow \bigcup_{j \in J} S_{j} \mid \forall j \in J: f(j) \in S_{j}\right\} \tag{1}
\end{equation*}
$$

- We denote by $\langle\cdot, \cdot\rangle$ the standard inner product, and by $\|\cdot\|$ the l_{2}-norm.

Notation

- We write "iff" as shorthand for "if and only if".
- For any finite set A, we denote by $|A|$ the number of elements of A.
- For any set A, we denote by 2^{A} the power set of A.
- For any set A and any $m \in \mathbb{N}$, we denote by $\binom{A}{m}$ the set of all m-elementary subsets of A, i.e. $\binom{A}{m}=\left\{B \in 2^{A}:|B|=m\right\}$.
- For any sets A, B, we denote by B^{A} the set of all maps from A to B
- For any map $f \in B^{A}$, any $a \in A$ and any $b \in B$, we may write $b=f(a)$ or $b=f_{a}$ instead of $(a, b) \in f$
- Given any set J and, for any $j \in J$, a set S_{j}, we denote by $\prod_{j \in J} S_{j}$ the Cartesian product of the family $\left\{S_{j}\right\}_{j \in J}$, i.e.

$$
\begin{equation*}
\prod_{j \in J} S_{j}=\left\{f: J \rightarrow \bigcup_{j \in J} S_{j} \mid \forall j \in J: f(j) \in S_{j}\right\} \tag{1}
\end{equation*}
$$

- We denote by $\langle\cdot, \cdot\rangle$ the standard inner product, and by $\|\cdot\|$ the l_{2}-norm.
- For any $m \in \mathbb{N}$, we define $[m]=\{0, \ldots, m-1\}$.

