Machine Learning I

Bjoern Andres, Shengxian Zhao

Machine Learning for Computer Vision TU Dresden

Winter Term 2022/2023

Welcome

- Online course consisting of
 - ► Lectures in TRE/PHYS on Fri, 09:20–11:10
 - Exercise groups starting October 26th:

Online	Wed, 09:20-11:10
In VMB/0302/U	Fri, 14:50–16:40
In VMB/0302/U	Fri, 16:40–18:30

- Self-study and moderated discussion in a forum
- Final examination (covering lectures and exercises)
- https://mlcv.inf.tu-dresden.de/courses/22-winter/ml1/index.html

► Registration:

- All participating students need to register through OPAL
- Those enrolled in the study program Computational Modeling and Simulation (CMS) need to register additionally via SELMA.

Textbooks:

- Barber, Bayesian Reasoning and Machine Learning
- Bishop, Pattern Recognition and Machine Learning
- Shai, Understanding Machine Learning

No recordings/reproductions of the lectures or exercises!

Machine Learning

Machine Learning is a branch of computer science devoted to the *study* and *development* of mathematical models and algorithms for understanding and interpreting data, as well as for deciding and acting wrt. data.

- Poses challenging problems
- Combines insights and methods from
 - Mathematics (esp. optimization, probability theory, statistics)
 - Computer Science (esp. algorithms, complexity, software engineering)
- Provides an opportunity for applying analytical and engineering skills
- ► Has impact on applications (medical, robotic, consumer)
- Grows dynamically
- ▶ Offers excellent career opportunities (esp. in tech companies and startups)

Machine Learning

Machine Learning is a branch of computer science devoted to the *study* and *development* of mathematical models and algorithms for understanding and interpreting data, as well as for deciding and acting wrt. data.

- Leading scholarly journal:
 - Journal of Machine Learning Research (JMLR)
- Leading academic conferences:
 - International Conference on Machine Learning (ICML)
 - Neural Information Processing Systems (NeurIPS)
 - International Conference on Learning Representations (ICLR)
- Closely related scientific communities:
 - ► Learning theory (e.g. ALT, COLT)
 - Artificial Intelligence (e.g. IJCAI, AAAI, UAI, AISTATS)

Contents

Supervised learning

- Disjunctive normal forms
- Binary decision trees
- Linear functions
- Artificial neural networks

Semi-supervised and unsupervised learning

- Partitioning
- Clustering
- Ordering
- Supervised structured learning
 - Conditional graphical models
- Density estimation
- Embedding

Prerequisites

Mathematics

- Linear algebra
- Multivariate calculus (basics)
- Probability theory (basics)
- Computer Science
 - Algorithms and data structures (basics)
 - Theoretical computer science (basics of complexity theory)

▶ We write "iff" as shorthand for "if and only if".

- ► We write "iff" as shorthand for "if and only if".
- For any finite set A, we denote by |A| the number of elements of A.

- ► We write "iff" as shorthand for "if and only if".
- For any finite set A, we denote by |A| the number of elements of A.
- For any set A, we denote by 2^A the power set of A.

- ▶ We write "iff" as shorthand for "if and only if".
- For any finite set A, we denote by |A| the number of elements of A.
- For any set A, we denote by 2^A the power set of A.
- For any set A and any m ∈ N, we denote by ^(A)_m the set of all m-elementary subsets of A, i.e. ^(A)_m = {B ∈ 2^A: |B| = m}.

- ▶ We write "iff" as shorthand for "if and only if".
- For any finite set A, we denote by |A| the number of elements of A.
- For any set A, we denote by 2^A the power set of A.
- For any set A and any m ∈ N, we denote by ^(A)_m the set of all m-elementary subsets of A, i.e. ^(A)_m = {B ∈ 2^A: |B| = m}.
- For any sets A, B, we denote by B^A the set of all maps from A to B

- ▶ We write "iff" as shorthand for "if and only if".
- For any finite set A, we denote by |A| the number of elements of A.
- For any set A, we denote by 2^A the power set of A.
- For any set A and any m ∈ N, we denote by ^(A)_m the set of all m-elementary subsets of A, i.e. ^(A)_m = {B ∈ 2^A: |B| = m}.
- For any sets A, B, we denote by B^A the set of all maps from A to B
- For any map f ∈ B^A, any a ∈ A and any b ∈ B, we may write b = f(a) or b = f_a instead of (a, b) ∈ f

- ▶ We write "iff" as shorthand for "if and only if".
- For any finite set A, we denote by |A| the number of elements of A.
- For any set A, we denote by 2^A the power set of A.
- ▶ For any set A and any $m \in \mathbb{N}$, we denote by $\binom{A}{m}$ the set of all m-elementary subsets of A, i.e. $\binom{A}{m} = \{B \in 2^A : |B| = m\}.$
- For any sets A, B, we denote by B^A the set of all maps from A to B
- For any map $f \in B^A$, any $a \in A$ and any $b \in B$, we may write b = f(a) or $b = f_a$ instead of $(a, b) \in f$
- Given any set J and, for any $j \in J$, a set S_j , we denote by $\prod_{j \in J} S_j$ the Cartesian product of the family $\{S_j\}_{j \in J}$, i.e.

$$\prod_{j \in J} S_j = \left\{ f \colon J \to \bigcup_{j \in J} S_j \, \middle| \, \forall j \in J \colon f(j) \in S_j \right\}$$
(1)

- ► We write "iff" as shorthand for "if and only if".
- For any finite set A, we denote by |A| the number of elements of A.
- For any set A, we denote by 2^A the power set of A.
- ▶ For any set A and any $m \in \mathbb{N}$, we denote by $\binom{A}{m}$ the set of all m-elementary subsets of A, i.e. $\binom{A}{m} = \{B \in 2^A : |B| = m\}.$
- For any sets A, B, we denote by B^A the set of all maps from A to B
- For any map $f \in B^A$, any $a \in A$ and any $b \in B$, we may write b = f(a) or $b = f_a$ instead of $(a, b) \in f$
- Given any set J and, for any $j \in J$, a set S_j , we denote by $\prod_{j \in J} S_j$ the Cartesian product of the family $\{S_j\}_{j \in J}$, i.e.

$$\prod_{j \in J} S_j = \left\{ f \colon J \to \bigcup_{j \in J} S_j \, \middle| \, \forall j \in J \colon f(j) \in S_j \right\}$$
(1)

• We denote by $\langle \cdot, \cdot \rangle$ the standard inner product, and by $\|\cdot\|$ the l_2 -norm.

- ▶ We write "iff" as shorthand for "if and only if".
- For any finite set A, we denote by |A| the number of elements of A.
- For any set A, we denote by 2^A the power set of A.
- ▶ For any set A and any $m \in \mathbb{N}$, we denote by $\binom{A}{m}$ the set of all m-elementary subsets of A, i.e. $\binom{A}{m} = \{B \in 2^A : |B| = m\}.$
- For any sets A, B, we denote by B^A the set of all maps from A to B
- For any map $f \in B^A$, any $a \in A$ and any $b \in B$, we may write b = f(a) or $b = f_a$ instead of $(a, b) \in f$
- ▶ Given any set J and, for any $j \in J$, a set S_j , we denote by $\prod_{j \in J} S_j$ the Cartesian product of the family $\{S_j\}_{j \in J}$, i.e.

$$\prod_{j \in J} S_j = \left\{ f \colon J \to \bigcup_{j \in J} S_j \, \middle| \, \forall j \in J \colon f(j) \in S_j \right\}$$
(1)

• We denote by $\langle \cdot, \cdot \rangle$ the standard inner product, and by $\|\cdot\|$ the l_2 -norm.

• For any $m \in \mathbb{N}$, we define $[m] = \{0, \dots, m-1\}$.