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Supervised Learning of Disjunctive Normal Forms

Contents. This part of the course is about a special case of supervised learning:
the supervised learning of disjunctive normal dorms.

I We state the problem by defining labeled data, a family of functions, a
regularizer and a loss function

I We prove that the problem is hard to solve (technically: np-hard), by
relating it to the well-known set cover problem.
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S

→
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1 the digit 7
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Data

We consider binary attributes. More specifically, we consider some finite,
non-empty set V , called the set of attributes, and labeled data T = (S,X, x, y)
such that X = {0, 1}V .

Hence, x : S → {0, 1}V and y : S → {0, 1}.
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Family of functions

Let Γ = {(V0, V1) ∈ 2V × 2V | V0 ∩ V1 = ∅} and Θ = 2Γ.

Definition. For any θ ∈ Θ and the fθ : {0, 1}V → {0, 1} such that

∀x ∈ {0, 1}V : fθ(x) =
∨

(V0,V1)∈θ

∏
v∈V0

(1− xv)
∏
v∈V1

xv , (1)

the form on the r.h.s. of (1) is called the disjunctive normal form (DNF)
defined by V and θ. The function fθ is said to be defined by the DNF.

Example. { (∅, {v1, v2}), ({v1}, {v3}) } = θ ∈ Θ defines the function

fθ(x) = xv1 xv2 ∨ (1− xv1)xv3 . (2)
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Regularization

In order to quantify the complexity of DNFs, we consider the following
regularizers.

Definition. The functions Rd, Rl : Θ→ N0 whose values are defined below for
any θ ∈ Θ are called the depth and length, resp., of the DNF defined by θ.

Rd(θ) = max
(V0,V1)∈θ

(|V0|+ |V1|) (3)

Rl(θ) =
∑

(V0,V1)∈θ

(|V0|+ |V1|) (4)
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Loss function

We consider the 0/1-loss L, i.e.

∀r ∈ R ∀ŷ ∈ {0, 1} : L(r, ŷ) =

{
0 r = ŷ

1 otherwise
. (5)
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Definition. For any R ∈ {Rl, Rd} and any λ ∈ R+
0 , the instance of the

supervised learning problem of DNFs with respect to T,L,R and λ has the
form

min
θ∈Θ

λR(θ) +
1

|S|
∑
s∈S

L(fθ(xs), ys) (6)

Definition. Let m ∈ N. The instance of the bounded depth DNF problem
w.r.t. T and m is to decide whether there exists a θ ∈ Θ such that

Rd(θ) ≤ m (7)

∀s ∈ S : fθ(xs) = ys . (8)

The instance of the bounded length DNF problem w.r.t. T and m is to decide
whether there exists a θ ∈ Θ such that

Rl(θ) ≤ m (9)

∀s ∈ S : fθ(xs) = ys . (10)
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Next, we will reduce the hard-to-solve (technically: np-hard) set cover problem
to the bounded length/depth DNF problem, thereby showing that these problems
are hard to solve (np-hard) as well. The reduction is by Haussler (1988).

Definition. For any set S and any ∅ /∈ Σ ⊆ 2S , the set Σ is called a cover of S
iff ⋃

U∈Σ

U = S . (11)

Definition. Let S be any set, let ∅ /∈ Σ ⊆ 2S and let m ∈ N. Deciding whether
there exists a Σ′ ⊆ Σ such that Σ′ is a cover of S, and |Σ′| ≤ m is called the
instance of the set cover problem with respect to S, Σ and m.
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Definition. For any instance (S′,Σ,m) of the set cover problem, the Haussler
data induced by (S′,Σ,m) is the labeled data (S,X, x, y) such that

I S = S′ ∪· {1}
I X = {0, 1}Σ

I x1 = 1Σ and

∀s ∈ S′ ∀σ ∈ Σ: xs(σ) =

{
0 if s ∈ σ
1 otherwise

(12)

I y1 = 1 and ∀s ∈ S′ : ys = 0
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Lemma 2: For any instance (S′,Σ,m) of the set cover problem, the Haussler
data (S,X, x, y) induced by (S′,Σ,m), and any Σ′ ⊆ Σ:⋃

σ∈Σ′

σ = S′ ⇔ ∀s ∈ S′ :
∏
σ∈Σ′

xs(σ) = 0

Proof. ⋃
σ∈Σ′

σ = S′

⇔ ∀s ∈ S′ ∃σ ∈ Σ′ : s ∈ σ (13)

⇔ ∀s ∈ S′ ∃σ ∈ Σ′ : xs(σ) = 0 (14)

⇔ ∀s ∈ S′ :
∏
σ∈Σ′

xs(σ) = 0 (15)
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Theorem 1. The set cover problem is reducible to the bounded depth/length
DNF problem.

Proof. The proof is for any R ∈ {Rd, Rl}.
Let (S′,Σ,m) any instance of the set cover problem.
Let T = (S,X, x, y) the Haussler data induced by (S′,Σ,m).
We show: There exists a cover Σ′ ⊆ Σ of S′ with |Σ′| ≤ m iff there exists a
θ ∈ Θ such that R(θ) ≤ m and ∀s ∈ S : fθ(xs) = ys.

(⇒) Let Σ′ ⊆ Σ a cover of S and |Σ′| ≤ m.
Let V0 = ∅ and V1 = Σ′ and θ = {(V0, V1)}. Thus,

∀x′ ∈ X : fθ(x
′) =

∏
σ∈Σ′

x′(σ) (16)

On the one hand, ∀s ∈ S′ : f(xs) = 0, by Lemma 2, and f(1Σ) = 1, by
definition of fθ. Thus, ∀s ∈ S : f(xs) = ys.
On the other hand, R(θ) = |Σ′| ≤ m.
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(⇐) Let θ ∈ Θ such that R(θ) ≤ m and ∀s ∈ S : fθ(xs) = ys.
There exists a (Σ0,Σ1) ∈ θ such that Σ0 = ∅, because
1 = y1 = fθ(x1) = fθ(1

Σ). Moreover:

∀s ∈ S′ : f(xs) = 0

⇒ ∀s ∈ S′ :
∨

(V0,V1)∈θ

∏
v∈V0

(1− xs(v))
∏
v∈V1

xs(v) = 0 (17)

⇒ ∀s ∈ S′ ∀(V0, V1) ∈ θ :
∏
v∈V0

(1− xs(v))
∏
v∈V1

xs(v) = 0 (18)

Thus, for (∅,Σ1) ∈ θ in particular:

∀s ∈ S′ :
∏
σ∈Σ1

xs(σ) = 0 (19)

And by virtue of Lemma 2: ⋃
σ∈Σ1

σ = S′ (20)

Furthermore, |Σ1| ≤ R(θ) = m. �
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Summary: Supervised learning of DNFs is hard. More specifically, the np-hard
set cover problem is reducible to the bounded length/depth DNF problem by
construction of Haussler data.


