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Clustering

Contents.

» This part of the course is about the problem of decomposing (clustering)
a graph into components (clusters), without knowing the number, size or
any other property of the clusters.

» This generalizes the problem of partitioning a set. It specializes to the latter
for complete graphs.

» Analogously, the problem of decomposing a graph is introduced as an
unsupervised learning problem w.r.t. constrained data.
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Definition.
> A subgraph G’ = (A’, E') of G is called a component (cluster) of G iff G’
is non-empty, node-induced (i.e. E' = EN (‘g/)) and connected.

» A partition II of the node set A is called a decomposition (clustering) of
G iff, for every U € I, the subgraph (U, EN (3)) of G induced by U is
connected (and thus a component of G).

» We denote by D¢ the set of all decompositions of G.
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Definition.
» A subset M C FE of edges is called a multicut of G iff, for every cycle
C C E of G, we have |[CN M| # 1.
» We denote by M¢ the set of all multicuts of G.

Lemma.

» For any decomposition of a graph G, the set of those edges that straddle
distinct components is a multicut of G. This multicut is said to be induced
by the decomposition.

» The map from decompositions to induced multicuts is a bijection from D¢
to Mq.
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Remarks:

» The characteristic function y: E — {0,1} of a multicut 4y~ (1) decides, for
every edge {a,b} = e € E, whether the incident nodes a and b belong to
the same component (y. = 0) or distinct components (y. = 1).
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Clustering

Remarks:

» The characteristic function y: E — {0,1} of a multicut 4y~ (1) decides, for
every edge {a,b} = e € E, whether the incident nodes a and b belong to
the same component (y. = 0) or distinct components (y. = 1).

» By the definition of a multicut, these decisions are not necessarily
independent.

Lemma. For any y: E — {0, 1}, the set y~'(1) of those edges that are mapped
to 1 is a multicut of G iff the following inequalities are satisfied:

VC € cycles(G) Ve e C: ye < Z Ye! (1)
e’eC\{e}
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Clustering

Constrained Data

We reduce the problem of learning and inferring multicuts to the problem of
learning and inferring decisions, by defining constrained data (S, X, z,Y") with

S=E (2)

Y=<y:E—{0,1} | VC € cycles(G) Ve € C": yggz%/ 3)
e'cC\{e}
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Familiy of functions

» We consider a finite, non-empty set V, called a set of attributes, and the
attribute space X =R"
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Familiy of functions

» We consider a finite, non-empty set V, called a set of attributes, and the
attribute space X =R"

» We consider linear functions. Specifically, we consider © = RY and
f:© — R¥ such that

VoeOVieR":  fo(d)=> 60,8, =(0,3) . (4)

veV
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Xs

0, O —CE Ys

veV seS

'
Oz
Random Variables

» For any {a,b} =s €S =FE, let X, be a random variable whose value is a
vector 5 € RY, the attribute vector of s.
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Xs

seS

0, O —CE Ys

veV

'
Oz
Random Variables

For any {a,b} = s € S =E, let X, be a random variable whose value is a
vector z, € RV, the attribute vector of s.

For any s € S, let Ys be a random variable whose value is a binary number
ys € {0,1}, called the decision of joining {a,b} = s.

For any v € V, let ©, be a random variable whose value is a real number
0, € R, a parameter of the function we seek to learn.

Let Z be a random variable whose value is a subset Z C {0, 1} called the
set of feasible decisions. For clustering, we are interested in Z =)/, the
set characterizing multicuts of G.
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Xs

0, O —CE Ys

veV seS

'
Oz

Factorization

P(X,Y,Z,0)=P(Z|Y) [[P(Y:| X:,0) [[P(©.) []P(Xs)

seS veVv

seS
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Factorization

» Supervised learning:

PO XY, Z)
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Factorization

» Supervised learning:

P(X,Y,Z,0)

P(X,Y,Z2)

P(Z|Y)P(Y|X,0)P
P(Z| X,Y)P(X,Y)

_P(ZIY) P(Y | X,0) P(X) P(©)

P(Z]Y)P(X,Y)

_ PV |X,0)P(X)P(O)
P(X,Y)

x P(Y | X,0) P(©)

_HPY|X e) [ p©.

veV

PO|X,Y,Z) =
(X)P(©)
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Clustering

Factorization

» Inference:

P(Y | X, Z2,6)
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Factorization
» Inference:
P(X,Y,Z,0)
WIX20="px 7 6)
_P(Z]Y)P(Y | X,0)P(X)P(O)
P(X, Z, @)

x P(Z|Y)P(Y | X,0)

= P(z|Y)[] P(Y: | X..0)
seS
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Clustering

Distributions

» Logistic distribution

1

veesS: prixee() = Tiphey
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Clustering
Distributions
» Normal distribution with ¢ € R™:

YvoeV: 0,) = ——
v p@)v( ) U\/ﬁ

0.4 R
5
~ 0.2 1
o]
S

U ! ! ! ! ! il
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Clustering

Distributions

» Uniform distribution on a subset

1 ifyez

vZ C {0,1}° vy € {0,1}° pziy(2,y) .
0 otherwise

Note that pzy (), y) is non-zero iff the labeling y: S — {0,1} defines an
multicut of G.
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Clustering

Lemma. Estimating maximally probable parameters 6, given attributes x and
decisions y, i.e.,

argmax pe|x,v,z(0,z,y,))
0erRY

is an [2-regularized logistic regression problem.
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Lemma. Estimating maximally probable parameters 6, given attributes x and
decisions y, i.e.,

argmax pe|x,v,z(0,z,y,))
0erRY

is an [2-regularized logistic regression problem.

Proof. Analogous to the case of deciding, we obtain:

argmax pe|x.,v,z(0,7,y,Y)

6eRrRY
. @ 1
= argmin Z (fys fo(zs) + log (1 4 2fe( 5>>) + Og2e||9||§ .
0eRV  Cs 20
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Clustering

Lemma. Estimating maximally probable decisions y, given attributes z, given
the set of feasible decisions ), and given parameters 0, i.e.,

argmax pY\X,Z,@(y7:C7y7 9) (7)
ye{0,1}5

assumes the form of the minimum cost multicut problem:

argmin 2(7(9, Ze)) Ye (8)

y: E—{0,1} cCcE

subject to VC € cycles(G) Ve € C':  ye < Z Yer (9)
e’eC\{e}
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Lemma. Estimating maximally probable decisions y, given attributes z, given
the set of feasible decisions ), and given parameters 0, i.e.,

argmax pY\X,Z,@(y7:C7y7 9) (7)
ye{0,1}5

assumes the form of the minimum cost multicut problem:

argmin 2(7(9, Ze)) Ye (8)

y: E—{0,1} cCcE

subject to VC € cycles(G) Ve € C':  ye < Z Yer (9)
e’eC\{e}

Theorem. The minimum cost multicut problem is NP-hard.

Bansal et al. (2004) reduce this problem to the k terminal cut problem whose
NP-hardness is an important result Dahlhaus et al. (1994).
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We will generalize the three local search algorithms we have defined for the set
partition problem to the minimum cost multicut problem.
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We will generalize the three local search algorithms we have defined for the set
partition problem to the minimum cost multicut problem.

For simplicity, we define ¢ : E — R such that
Vee S: ce=—(0,zc) (10)

and write the (linear) cost function ¢ : {0,1}” — R such that

vy € {0,137 p(y) = ceye (11)

eckE
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Greedy joining algorithm:

» The greedy joining algorithm is a local search algorithm that starts from
any initial decomposition.
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Clustering

Greedy joining algorithm:
» The greedy joining algorithm is a local search algorithm that starts from
any initial decomposition.

» |t searches for decompositions with lower cost by joining pairs of
neighboring (!) components recursively.

» As components can only grow and the number of components decreases by
one in every step, one typically starts from the finest decomposition Il of
A into one-elementary components.
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Definition. Let G = (A, E) be any graph.
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Definition. Let G = (A, E) be any graph.
» For any disjoint sets B,C C A, the pair {B, C} is called neighboring in G
iff there exist nodes b € B and ¢ € C such that {b,c} € E.

» For any decomposition II of a graph G = (A, E), we define
En={{B,C}e (})|FbeB3ceC: {bct e E} . (12)

» For any decomposition IT of G = (A, E) and any {B,C} € &, let
joing[I1] be the decomposition of G obtained by joining the sets B and C'
inII, i.e.

joing [l = (II\ {B,C}HUu{BUC} . (13)
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Clustering

IT' = greedy-joining(IT)

choose {B,C} € argmin o(y°"s'c’ M) _ oy
{B',C'}eén
if oy ety —p(y") <0
IT' := greedy-joining(join g [I1])
else
Ir:=1u
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Greedy moving algorithm:

» The greedy moving algorithm is a local search algorithm that starts from
any initial decomposition, e.g., the fixed point of greedy joining.
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Clustering

Greedy moving algorithm:

» The greedy moving algorithm is a local search algorithm that starts from

>

any initial decomposition, e.g., the fixed point of greedy joining.

It searches for decompositions with lower cost by recursively moving
individual nodes from one component to a neighboring! component,
possibly a new one.

When a cut node is moved out of a component or a node is moved to a new
component, the number of components increases. When the last element is
moved out of a component, the number of components decreases.
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Definition. For any graph G = (A, E) and any decomposition II of G, the
decomposition IT is called coarsest iff, for every U € II, the component
(U,EN (3)) induced by U is maximal.
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Definition. For any graph G = (A, E) and any decomposition II of G, the
decomposition IT is called coarsest iff, for every U € II, the component
(U,EN (3)) induced by U is maximal.

Lemma. For any graph G, the coarsest decomposition is unique. We denote it
by II¢,.

Definition. For any graph G = (A, E), any decomposition IT of A and any

a € A, choose U, to be the unique U, € II such that a € U,, and let
Noe={0} U{Well|lag W A FweW: {a,w} € E} (14)
Ga = (Ua \ {a}, EN (Ua\;a})) (15)

For any U € N, let move,u[I1] the decomposition of A obtained by moving the
node a to the set U, i.e.

move,u [T = T\ {U,, Uy U{U U {a}} UTIE, . (16)

24/26
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IT" = greedy-moving(T)

choose (a,U) € argmin o(y™ e v’ M) — oyt
a’€A, U’ENa/
if p(ymeav i) —o(y™) <0
IT" := greedy-moving(move,u [I1])
else
=1
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Clustering

IT" = greedy-moving(T)

choose (a,U) € argmin o(y™ e v’ M) — oyt
a’€A, U'eN,,
if p(ymeav i) —o(y™) <0
IT" := greedy-moving(move,u [I1])
else
=1

A generalization of this algorithm by means of the technique of Kernighan and
Lin (1970) is analogous to the greedy moving algorithm for the set partition
problem.

25/26



Clustering

Summary.

» Learning and inferring decompositions (clusterings) of a graph is an
unsupervised learning problem w.r.t. constrained data whose feasible
labelings characterize the multicuts of the graph

26/26



Clustering

Summary.

» Learning and inferring decompositions (clusterings) of a graph is an
unsupervised learning problem w.r.t. constrained data whose feasible
labelings characterize the multicuts of the graph

» The supervised learning problem can assume the form of l2-regularized
logistic regression where samples are pairs of neighboring nodes and
decisions indicate whether these nodes are in the same or distinct
components

26/26



Clustering

Summary.

» Learning and inferring decompositions (clusterings) of a graph is an
unsupervised learning problem w.r.t. constrained data whose feasible
labelings characterize the multicuts of the graph

» The supervised learning problem can assume the form of l2-regularized
logistic regression where samples are pairs of neighboring nodes and
decisions indicate whether these nodes are in the same or distinct
components

» The inference problem assumes the form of the NP-hard minimum cost
multicut problem

26/26



Clustering

Summary.

» Learning and inferring decompositions (clusterings) of a graph is an
unsupervised learning problem w.r.t. constrained data whose feasible
labelings characterize the multicuts of the graph

» The supervised learning problem can assume the form of l2-regularized
logistic regression where samples are pairs of neighboring nodes and
decisions indicate whether these nodes are in the same or distinct
components

» The inference problem assumes the form of the NP-hard minimum cost
multicut problem

» Local search algorithms for tackling this problem are greedy joining, greedy
moving, and greedy moving using the technique of Kernighan and Lin.
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