
1/26

Machine Learning I

Bjoern Andres, Shengxian Zhao

Machine Learning for Computer Vision
TU Dresden

Winter Term 2022/2023

https://mlcv.inf.tu-dresden.de/courses/22-winter/ml1/index.html

2/26

Clustering

Contents.

I This part of the course is about the problem of decomposing (clustering)
a graph into components (clusters), without knowing the number, size or
any other property of the clusters.

I This generalizes the problem of partitioning a set. It specializes to the latter
for complete graphs.

I Analogously, the problem of decomposing a graph is introduced as an
unsupervised learning problem w.r.t. constrained data.

2/26

Clustering

Contents.

I This part of the course is about the problem of decomposing (clustering)
a graph into components (clusters), without knowing the number, size or
any other property of the clusters.

I This generalizes the problem of partitioning a set. It specializes to the latter
for complete graphs.

I Analogously, the problem of decomposing a graph is introduced as an
unsupervised learning problem w.r.t. constrained data.

2/26

Clustering

Contents.

I This part of the course is about the problem of decomposing (clustering)
a graph into components (clusters), without knowing the number, size or
any other property of the clusters.

I This generalizes the problem of partitioning a set. It specializes to the latter
for complete graphs.

I Analogously, the problem of decomposing a graph is introduced as an
unsupervised learning problem w.r.t. constrained data.

3/26

Clustering

Decomposition of a graph G = (V,E)

3/26

Clustering

Decomposition of a graph G = (V,E)

4/26

Clustering

Decomposition of a graph G = (V,E)

4/26

Clustering

Decomposition of a graph G = (V,E)

4/26

Clustering

Multicut of a graph G = (V,E)

4/26

Clustering

Multicut of a graph G = (V,E)

4/26

Clustering

Multicut of a graph G = (V,E)

4/26

Clustering

Multicut of a graph G = (V,E)

4/26

Clustering

Multicut of a graph G = (V,E)

4/26

Clustering

Multicut of a graph G = (V,E)

5/26

Clustering

Let G = (A,E) be any graph.

Definition.

I A subgraph G′ = (A′, E′) of G is called a component (cluster) of G iff G′

is non-empty, node-induced (i.e. E′ = E ∩
(
A′

2

)
) and connected.

I A partition Π of the node set A is called a decomposition (clustering) of
G iff, for every U ∈ Π, the subgraph (U,E ∩

(
U
2

)
) of G induced by U is

connected (and thus a component of G).

I We denote by DG the set of all decompositions of G.

5/26

Clustering

Let G = (A,E) be any graph.

Definition.

I A subgraph G′ = (A′, E′) of G is called a component (cluster) of G iff G′

is non-empty, node-induced (i.e. E′ = E ∩
(
A′

2

)
) and connected.

I A partition Π of the node set A is called a decomposition (clustering) of
G iff, for every U ∈ Π, the subgraph (U,E ∩

(
U
2

)
) of G induced by U is

connected (and thus a component of G).

I We denote by DG the set of all decompositions of G.

5/26

Clustering

Let G = (A,E) be any graph.

Definition.

I A subgraph G′ = (A′, E′) of G is called a component (cluster) of G iff G′

is non-empty, node-induced (i.e. E′ = E ∩
(
A′

2

)
) and connected.

I A partition Π of the node set A is called a decomposition (clustering) of
G iff, for every U ∈ Π, the subgraph (U,E ∩

(
U
2

)
) of G induced by U is

connected (and thus a component of G).

I We denote by DG the set of all decompositions of G.

5/26

Clustering

Let G = (A,E) be any graph.

Definition.

I A subgraph G′ = (A′, E′) of G is called a component (cluster) of G iff G′

is non-empty, node-induced (i.e. E′ = E ∩
(
A′

2

)
) and connected.

I A partition Π of the node set A is called a decomposition (clustering) of
G iff, for every U ∈ Π, the subgraph (U,E ∩

(
U
2

)
) of G induced by U is

connected (and thus a component of G).

I We denote by DG the set of all decompositions of G.

6/26

Clustering

Definition.

I A subset M ⊆ E of edges is called a multicut of G iff, for every cycle
C ⊆ E of G, we have |C ∩M | 6= 1.

I We denote by MG the set of all multicuts of G.

Lemma.

I For any decomposition of a graph G, the set of those edges that straddle
distinct components is a multicut of G. This multicut is said to be induced
by the decomposition.

I The map from decompositions to induced multicuts is a bijection from DG
to MG.

6/26

Clustering

Definition.

I A subset M ⊆ E of edges is called a multicut of G iff, for every cycle
C ⊆ E of G, we have |C ∩M | 6= 1.

I We denote by MG the set of all multicuts of G.

Lemma.

I For any decomposition of a graph G, the set of those edges that straddle
distinct components is a multicut of G. This multicut is said to be induced
by the decomposition.

I The map from decompositions to induced multicuts is a bijection from DG
to MG.

6/26

Clustering

Definition.

I A subset M ⊆ E of edges is called a multicut of G iff, for every cycle
C ⊆ E of G, we have |C ∩M | 6= 1.

I We denote by MG the set of all multicuts of G.

Lemma.

I For any decomposition of a graph G, the set of those edges that straddle
distinct components is a multicut of G. This multicut is said to be induced
by the decomposition.

I The map from decompositions to induced multicuts is a bijection from DG
to MG.

6/26

Clustering

Definition.

I A subset M ⊆ E of edges is called a multicut of G iff, for every cycle
C ⊆ E of G, we have |C ∩M | 6= 1.

I We denote by MG the set of all multicuts of G.

Lemma.

I For any decomposition of a graph G, the set of those edges that straddle
distinct components is a multicut of G. This multicut is said to be induced
by the decomposition.

I The map from decompositions to induced multicuts is a bijection from DG
to MG.

7/26

Clustering

Remarks:

I The characteristic function y : E → {0, 1} of a multicut y−1(1) decides, for
every edge {a, b} = e ∈ E, whether the incident nodes a and b belong to
the same component (ye = 0) or distinct components (ye = 1).

I By the definition of a multicut, these decisions are not necessarily
independent.

Lemma. For any y : E → {0, 1}, the set y−1(1) of those edges that are mapped
to 1 is a multicut of G iff the following inequalities are satisfied:

∀C ∈ cycles(G) ∀e ∈ C : ye ≤
∑

e′∈C\{e}

ye′ (1)

7/26

Clustering

Remarks:

I The characteristic function y : E → {0, 1} of a multicut y−1(1) decides, for
every edge {a, b} = e ∈ E, whether the incident nodes a and b belong to
the same component (ye = 0) or distinct components (ye = 1).

I By the definition of a multicut, these decisions are not necessarily
independent.

Lemma. For any y : E → {0, 1}, the set y−1(1) of those edges that are mapped
to 1 is a multicut of G iff the following inequalities are satisfied:

∀C ∈ cycles(G) ∀e ∈ C : ye ≤
∑

e′∈C\{e}

ye′ (1)

7/26

Clustering

Remarks:

I The characteristic function y : E → {0, 1} of a multicut y−1(1) decides, for
every edge {a, b} = e ∈ E, whether the incident nodes a and b belong to
the same component (ye = 0) or distinct components (ye = 1).

I By the definition of a multicut, these decisions are not necessarily
independent.

Lemma. For any y : E → {0, 1}, the set y−1(1) of those edges that are mapped
to 1 is a multicut of G iff the following inequalities are satisfied:

∀C ∈ cycles(G) ∀e ∈ C : ye ≤
∑

e′∈C\{e}

ye′ (1)

8/26

Clustering

Constrained Data

We reduce the problem of learning and inferring multicuts to the problem of
learning and inferring decisions, by defining constrained data (S,X, x, Y) with

S = E (2)

Y =

y : E → {0, 1}

∣∣∣∣∣∣ ∀C ∈ cycles(G) ∀e ∈ C : ye ≤
∑

e′∈C\{e}

ye′

 (3)

9/26

Clustering

Familiy of functions

I We consider a finite, non-empty set V , called a set of attributes, and the
attribute space X = RV

I We consider linear functions. Specifically, we consider Θ = RV and
f : Θ→ RX such that

∀θ ∈ Θ ∀x̂ ∈ RV : fθ(x̂) =
∑
v∈V

θv x̂v = 〈θ, x̂〉 . (4)

9/26

Clustering

Familiy of functions

I We consider a finite, non-empty set V , called a set of attributes, and the
attribute space X = RV

I We consider linear functions. Specifically, we consider Θ = RV and
f : Θ→ RX such that

∀θ ∈ Θ ∀x̂ ∈ RV : fθ(x̂) =
∑
v∈V

θv x̂v = 〈θ, x̂〉 . (4)

10/26

Clustering

Xs

Ys

Z

Θv
v ∈ V s ∈ S

Random Variables

I For any {a, b} = s ∈ S = E, let Xs be a random variable whose value is a
vector xs ∈ RV , the attribute vector of s.

I For any s ∈ S, let Ys be a random variable whose value is a binary number
ys ∈ {0, 1}, called the decision of joining {a, b} = s.

I For any v ∈ V , let Θv be a random variable whose value is a real number
θv ∈ R, a parameter of the function we seek to learn.

I Let Z be a random variable whose value is a subset Z ⊆ {0, 1}S called the
set of feasible decisions. For clustering, we are interested in Z = Y, the
set characterizing multicuts of G.

10/26

Clustering

Xs

Ys

Z

Θv
v ∈ V s ∈ S

Random Variables

I For any {a, b} = s ∈ S = E, let Xs be a random variable whose value is a
vector xs ∈ RV , the attribute vector of s.

I For any s ∈ S, let Ys be a random variable whose value is a binary number
ys ∈ {0, 1}, called the decision of joining {a, b} = s.

I For any v ∈ V , let Θv be a random variable whose value is a real number
θv ∈ R, a parameter of the function we seek to learn.

I Let Z be a random variable whose value is a subset Z ⊆ {0, 1}S called the
set of feasible decisions. For clustering, we are interested in Z = Y, the
set characterizing multicuts of G.

10/26

Clustering

Xs

Ys

Z

Θv
v ∈ V s ∈ S

Random Variables

I For any {a, b} = s ∈ S = E, let Xs be a random variable whose value is a
vector xs ∈ RV , the attribute vector of s.

I For any s ∈ S, let Ys be a random variable whose value is a binary number
ys ∈ {0, 1}, called the decision of joining {a, b} = s.

I For any v ∈ V , let Θv be a random variable whose value is a real number
θv ∈ R, a parameter of the function we seek to learn.

I Let Z be a random variable whose value is a subset Z ⊆ {0, 1}S called the
set of feasible decisions. For clustering, we are interested in Z = Y, the
set characterizing multicuts of G.

10/26

Clustering

Xs

Ys

Z

Θv
v ∈ V s ∈ S

Random Variables

I For any {a, b} = s ∈ S = E, let Xs be a random variable whose value is a
vector xs ∈ RV , the attribute vector of s.

I For any s ∈ S, let Ys be a random variable whose value is a binary number
ys ∈ {0, 1}, called the decision of joining {a, b} = s.

I For any v ∈ V , let Θv be a random variable whose value is a real number
θv ∈ R, a parameter of the function we seek to learn.

I Let Z be a random variable whose value is a subset Z ⊆ {0, 1}S called the
set of feasible decisions. For clustering, we are interested in Z = Y, the
set characterizing multicuts of G.

11/26

Clustering

Xs

Ys

Z

Θv
v ∈ V s ∈ S

Factorization

P (X,Y, Z,Θ) = P (Z | Y)
∏
s∈S

P (Ys | Xs,Θ)
∏
v∈V

P (Θv)
∏
s∈S

P (Xs)

12/26

Clustering

Factorization

I Supervised learning:

P (Θ | X,Y, Z)

=
P (X,Y, Z,Θ)

P (X,Y, Z)

=
P (Z | Y)P (Y | X,Θ)P (X)P (Θ)

P (Z | X,Y)P (X,Y)

=
P (Z | Y)P (Y | X,Θ)P (X)P (Θ)

P (Z | Y)P (X,Y)

=
P (Y | X,Θ)P (X)P (Θ)

P (X,Y)

∝ P (Y | X,Θ)P (Θ)

=
∏
s∈S

P (Ys | Xs,Θ)
∏
v∈V

P (Θv)

12/26

Clustering

Factorization

I Supervised learning:

P (Θ | X,Y, Z) =
P (X,Y, Z,Θ)

P (X,Y, Z)

=
P (Z | Y)P (Y | X,Θ)P (X)P (Θ)

P (Z | X,Y)P (X,Y)

=
P (Z | Y)P (Y | X,Θ)P (X)P (Θ)

P (Z | Y)P (X,Y)

=
P (Y | X,Θ)P (X)P (Θ)

P (X,Y)

∝ P (Y | X,Θ)P (Θ)

=
∏
s∈S

P (Ys | Xs,Θ)
∏
v∈V

P (Θv)

13/26

Clustering

Factorization

I Inference:

P (Y | X,Z, θ)

=
P (X,Y, Z,Θ)

P (X,Z,Θ)

=
P (Z | Y)P (Y | X,Θ)P (X)P (Θ)

P (X,Z,Θ)

∝ P (Z | Y)P (Y | X,Θ)

= P (Z | Y)
∏
s∈S

P (Ys | Xs,Θ)

13/26

Clustering

Factorization

I Inference:

P (Y | X,Z, θ) =
P (X,Y, Z,Θ)

P (X,Z,Θ)

=
P (Z | Y)P (Y | X,Θ)P (X)P (Θ)

P (X,Z,Θ)

∝ P (Z | Y)P (Y | X,Θ)

= P (Z | Y)
∏
s∈S

P (Ys | Xs,Θ)

14/26

Clustering

Distributions

I Logistic distribution

∀s ∈ S : pYs|Xs,Θ(1) =
1

1 + 2−fθ(xs)
(5)

−6 −4 −2 0 2 4 6
0

0.5

1

fθ(xs)

p
Y
s
|X
s
,Θ

(1
)

15/26

Clustering

Distributions

I Normal distribution with σ ∈ R+:

∀v ∈ V : pΘv (θv) =
1

σ
√

2π
e−θ

2
v/2σ

2

(6)

−6 −4 −2 0 2 4 6

0

0.2

0.4

θv

p
Θ
v
(θ
v
)

16/26

Clustering

Distributions

I Uniform distribution on a subset

∀Z ⊆ {0, 1}S ∀y ∈ {0, 1}S pZ|Y (Z, y) ∝

{
1 if y ∈ Z
0 otherwise

Note that pZ|Y (Y, y) is non-zero iff the labeling y : S → {0, 1} defines an
multicut of G.

17/26

Clustering

Lemma. Estimating maximally probable parameters θ, given attributes x and
decisions y, i.e.,

argmax
θ∈RV

pΘ|X,Y,Z(θ, x, y,Y)

is an l2-regularized logistic regression problem.

Proof. Analogous to the case of deciding, we obtain:

argmax
θ∈RV

pΘ|X,Y,Z(θ, x, y,Y)

= argmin
θ∈RV

∑
s∈S

(
−ys fθ(xs) + log

(
1 + 2fθ(xs)

))
+

log e

2σ2
‖θ‖22 .

17/26

Clustering

Lemma. Estimating maximally probable parameters θ, given attributes x and
decisions y, i.e.,

argmax
θ∈RV

pΘ|X,Y,Z(θ, x, y,Y)

is an l2-regularized logistic regression problem.

Proof. Analogous to the case of deciding, we obtain:

argmax
θ∈RV

pΘ|X,Y,Z(θ, x, y,Y)

= argmin
θ∈RV

∑
s∈S

(
−ys fθ(xs) + log

(
1 + 2fθ(xs)

))
+

log e

2σ2
‖θ‖22 .

18/26

Clustering

Lemma. Estimating maximally probable decisions y, given attributes x, given
the set of feasible decisions Y, and given parameters θ, i.e.,

argmax
y∈{0,1}S

pY |X,Z,Θ(y, x,Y, θ) (7)

assumes the form of the minimum cost multicut problem:

argmin
y : E→{0,1}

∑
e∈E

(−〈θ, xe〉) ye (8)

subject to ∀C ∈ cycles(G) ∀e ∈ C : ye ≤
∑

e′∈C\{e}

ye′ (9)

Theorem. The minimum cost multicut problem is np-hard.

Bansal et al. (2004) reduce this problem to the k terminal cut problem whose
np-hardness is an important result Dahlhaus et al. (1994).

18/26

Clustering

Lemma. Estimating maximally probable decisions y, given attributes x, given
the set of feasible decisions Y, and given parameters θ, i.e.,

argmax
y∈{0,1}S

pY |X,Z,Θ(y, x,Y, θ) (7)

assumes the form of the minimum cost multicut problem:

argmin
y : E→{0,1}

∑
e∈E

(−〈θ, xe〉) ye (8)

subject to ∀C ∈ cycles(G) ∀e ∈ C : ye ≤
∑

e′∈C\{e}

ye′ (9)

Theorem. The minimum cost multicut problem is np-hard.

Bansal et al. (2004) reduce this problem to the k terminal cut problem whose
np-hardness is an important result Dahlhaus et al. (1994).

19/26

We will generalize the three local search algorithms we have defined for the set
partition problem to the minimum cost multicut problem.

For simplicity, we define c : E → R such that

∀e ∈ S : ce = −〈θ, xe〉 (10)

and write the (linear) cost function ϕ : {0, 1}E → R such that

∀y ∈ {0, 1}E : ϕ(y) =
∑
e∈E

ce ye (11)

19/26

We will generalize the three local search algorithms we have defined for the set
partition problem to the minimum cost multicut problem.

For simplicity, we define c : E → R such that

∀e ∈ S : ce = −〈θ, xe〉 (10)

and write the (linear) cost function ϕ : {0, 1}E → R such that

∀y ∈ {0, 1}E : ϕ(y) =
∑
e∈E

ce ye (11)

20/26

Clustering

Greedy joining algorithm:

I The greedy joining algorithm is a local search algorithm that starts from
any initial decomposition.

I It searches for decompositions with lower cost by joining pairs of
neighboring (!) components recursively.

I As components can only grow and the number of components decreases by
one in every step, one typically starts from the finest decomposition Π0 of
A into one-elementary components.

20/26

Clustering

Greedy joining algorithm:

I The greedy joining algorithm is a local search algorithm that starts from
any initial decomposition.

I It searches for decompositions with lower cost by joining pairs of
neighboring (!) components recursively.

I As components can only grow and the number of components decreases by
one in every step, one typically starts from the finest decomposition Π0 of
A into one-elementary components.

20/26

Clustering

Greedy joining algorithm:

I The greedy joining algorithm is a local search algorithm that starts from
any initial decomposition.

I It searches for decompositions with lower cost by joining pairs of
neighboring (!) components recursively.

I As components can only grow and the number of components decreases by
one in every step, one typically starts from the finest decomposition Π0 of
A into one-elementary components.

21/26

Clustering

Definition. Let G = (A,E) be any graph.

I For any disjoint sets B,C ⊆ A, the pair {B,C} is called neighboring in G
iff there exist nodes b ∈ B and c ∈ C such that {b, c} ∈ E.

I For any decomposition Π of a graph G = (A,E), we define

EΠ =
{
{B,C} ∈

(
Π
2

) ∣∣∃b ∈ B ∃c ∈ C : {b, c} ∈ E
}
. (12)

I For any decomposition Π of G = (A,E) and any {B,C} ∈ EΠ, let
joinBC [Π] be the decomposition of G obtained by joining the sets B and C
in Π, i.e.

joinBC [Π] = (Π \ {B,C}) ∪ {B ∪ C} . (13)

21/26

Clustering

Definition. Let G = (A,E) be any graph.

I For any disjoint sets B,C ⊆ A, the pair {B,C} is called neighboring in G
iff there exist nodes b ∈ B and c ∈ C such that {b, c} ∈ E.

I For any decomposition Π of a graph G = (A,E), we define

EΠ =
{
{B,C} ∈

(
Π
2

) ∣∣∃b ∈ B ∃c ∈ C : {b, c} ∈ E
}
. (12)

I For any decomposition Π of G = (A,E) and any {B,C} ∈ EΠ, let
joinBC [Π] be the decomposition of G obtained by joining the sets B and C
in Π, i.e.

joinBC [Π] = (Π \ {B,C}) ∪ {B ∪ C} . (13)

21/26

Clustering

Definition. Let G = (A,E) be any graph.

I For any disjoint sets B,C ⊆ A, the pair {B,C} is called neighboring in G
iff there exist nodes b ∈ B and c ∈ C such that {b, c} ∈ E.

I For any decomposition Π of a graph G = (A,E), we define

EΠ =
{
{B,C} ∈

(
Π
2

) ∣∣∃b ∈ B ∃c ∈ C : {b, c} ∈ E
}
. (12)

I For any decomposition Π of G = (A,E) and any {B,C} ∈ EΠ, let
joinBC [Π] be the decomposition of G obtained by joining the sets B and C
in Π, i.e.

joinBC [Π] = (Π \ {B,C}) ∪ {B ∪ C} . (13)

21/26

Clustering

Definition. Let G = (A,E) be any graph.

I For any disjoint sets B,C ⊆ A, the pair {B,C} is called neighboring in G
iff there exist nodes b ∈ B and c ∈ C such that {b, c} ∈ E.

I For any decomposition Π of a graph G = (A,E), we define

EΠ =
{
{B,C} ∈

(
Π
2

) ∣∣∃b ∈ B ∃c ∈ C : {b, c} ∈ E
}
. (12)

I For any decomposition Π of G = (A,E) and any {B,C} ∈ EΠ, let
joinBC [Π] be the decomposition of G obtained by joining the sets B and C
in Π, i.e.

joinBC [Π] = (Π \ {B,C}) ∪ {B ∪ C} . (13)

22/26

Clustering

Π′ = greedy-joining(Π)

choose {B,C} ∈ argmin
{B′,C′}∈EΠ

ϕ(yjoinB′C′ [Π])− ϕ(yΠ)

if ϕ(yjoinBC [Π])− ϕ(yΠ) < 0
Π′ := greedy-joining(joinBC [Π])

else
Π′ := Π

23/26

Clustering

Greedy moving algorithm:

I The greedy moving algorithm is a local search algorithm that starts from
any initial decomposition, e.g., the fixed point of greedy joining.

I It searches for decompositions with lower cost by recursively moving
individual nodes from one component to a neighboring! component,
possibly a new one.

I When a cut node is moved out of a component or a node is moved to a new
component, the number of components increases. When the last element is
moved out of a component, the number of components decreases.

23/26

Clustering

Greedy moving algorithm:

I The greedy moving algorithm is a local search algorithm that starts from
any initial decomposition, e.g., the fixed point of greedy joining.

I It searches for decompositions with lower cost by recursively moving
individual nodes from one component to a neighboring! component,
possibly a new one.

I When a cut node is moved out of a component or a node is moved to a new
component, the number of components increases. When the last element is
moved out of a component, the number of components decreases.

23/26

Clustering

Greedy moving algorithm:

I The greedy moving algorithm is a local search algorithm that starts from
any initial decomposition, e.g., the fixed point of greedy joining.

I It searches for decompositions with lower cost by recursively moving
individual nodes from one component to a neighboring! component,
possibly a new one.

I When a cut node is moved out of a component or a node is moved to a new
component, the number of components increases. When the last element is
moved out of a component, the number of components decreases.

24/26

Clustering

Definition. For any graph G = (A,E) and any decomposition Π of G, the
decomposition Π is called coarsest iff, for every U ∈ Π, the component
(U,E ∩

(
U
2

)
) induced by U is maximal.

Lemma. For any graph G, the coarsest decomposition is unique. We denote it
by Π∗G.

Definition. For any graph G = (A,E), any decomposition Π of A and any
a ∈ A, choose Ua to be the unique Ua ∈ Π such that a ∈ Ua, and let

Na = {∅} ∪ {W ∈ Π | a /∈W ∧ ∃w ∈W : {a,w} ∈ E} (14)

Ga =
(
Ua \ {a}, E ∩

(
Ua\{a}

2

))
(15)

For any U ∈ Na, let moveaU [Π] the decomposition of A obtained by moving the
node a to the set U , i.e.

moveaU [Π] = Π \ {Ua, U} ∪ {U ∪ {a}} ∪Π∗Ga . (16)

24/26

Clustering

Definition. For any graph G = (A,E) and any decomposition Π of G, the
decomposition Π is called coarsest iff, for every U ∈ Π, the component
(U,E ∩

(
U
2

)
) induced by U is maximal.

Lemma. For any graph G, the coarsest decomposition is unique. We denote it
by Π∗G.

Definition. For any graph G = (A,E), any decomposition Π of A and any
a ∈ A, choose Ua to be the unique Ua ∈ Π such that a ∈ Ua, and let

Na = {∅} ∪ {W ∈ Π | a /∈W ∧ ∃w ∈W : {a,w} ∈ E} (14)

Ga =
(
Ua \ {a}, E ∩

(
Ua\{a}

2

))
(15)

For any U ∈ Na, let moveaU [Π] the decomposition of A obtained by moving the
node a to the set U , i.e.

moveaU [Π] = Π \ {Ua, U} ∪ {U ∪ {a}} ∪Π∗Ga . (16)

24/26

Clustering

Definition. For any graph G = (A,E) and any decomposition Π of G, the
decomposition Π is called coarsest iff, for every U ∈ Π, the component
(U,E ∩

(
U
2

)
) induced by U is maximal.

Lemma. For any graph G, the coarsest decomposition is unique. We denote it
by Π∗G.

Definition. For any graph G = (A,E), any decomposition Π of A and any
a ∈ A, choose Ua to be the unique Ua ∈ Π such that a ∈ Ua, and let

Na = {∅} ∪ {W ∈ Π | a /∈W ∧ ∃w ∈W : {a,w} ∈ E} (14)

Ga =
(
Ua \ {a}, E ∩

(
Ua\{a}

2

))
(15)

For any U ∈ Na, let moveaU [Π] the decomposition of A obtained by moving the
node a to the set U , i.e.

moveaU [Π] = Π \ {Ua, U} ∪ {U ∪ {a}} ∪Π∗Ga . (16)

25/26

Clustering

Π′ = greedy-moving(Π)

choose (a, U) ∈ argmin
a′∈A, U′∈Na′

ϕ(ymovea′U′ [Π])− ϕ(yΠ)

if ϕ(ymoveaU [Π])− ϕ(yΠ) < 0
Π′ := greedy-moving(moveaU [Π])

else
Π′ := Π

A generalization of this algorithm by means of the technique of Kernighan and
Lin (1970) is analogous to the greedy moving algorithm for the set partition
problem.

25/26

Clustering

Π′ = greedy-moving(Π)

choose (a, U) ∈ argmin
a′∈A, U′∈Na′

ϕ(ymovea′U′ [Π])− ϕ(yΠ)

if ϕ(ymoveaU [Π])− ϕ(yΠ) < 0
Π′ := greedy-moving(moveaU [Π])

else
Π′ := Π

A generalization of this algorithm by means of the technique of Kernighan and
Lin (1970) is analogous to the greedy moving algorithm for the set partition
problem.

26/26

Clustering

Summary.

I Learning and inferring decompositions (clusterings) of a graph is an
unsupervised learning problem w.r.t. constrained data whose feasible
labelings characterize the multicuts of the graph

I The supervised learning problem can assume the form of l2-regularized
logistic regression where samples are pairs of neighboring nodes and
decisions indicate whether these nodes are in the same or distinct
components

I The inference problem assumes the form of the np-hard minimum cost
multicut problem

I Local search algorithms for tackling this problem are greedy joining, greedy
moving, and greedy moving using the technique of Kernighan and Lin.

26/26

Clustering

Summary.

I Learning and inferring decompositions (clusterings) of a graph is an
unsupervised learning problem w.r.t. constrained data whose feasible
labelings characterize the multicuts of the graph

I The supervised learning problem can assume the form of l2-regularized
logistic regression where samples are pairs of neighboring nodes and
decisions indicate whether these nodes are in the same or distinct
components

I The inference problem assumes the form of the np-hard minimum cost
multicut problem

I Local search algorithms for tackling this problem are greedy joining, greedy
moving, and greedy moving using the technique of Kernighan and Lin.

26/26

Clustering

Summary.

I Learning and inferring decompositions (clusterings) of a graph is an
unsupervised learning problem w.r.t. constrained data whose feasible
labelings characterize the multicuts of the graph

I The supervised learning problem can assume the form of l2-regularized
logistic regression where samples are pairs of neighboring nodes and
decisions indicate whether these nodes are in the same or distinct
components

I The inference problem assumes the form of the np-hard minimum cost
multicut problem

I Local search algorithms for tackling this problem are greedy joining, greedy
moving, and greedy moving using the technique of Kernighan and Lin.

26/26

Clustering

Summary.

I Learning and inferring decompositions (clusterings) of a graph is an
unsupervised learning problem w.r.t. constrained data whose feasible
labelings characterize the multicuts of the graph

I The supervised learning problem can assume the form of l2-regularized
logistic regression where samples are pairs of neighboring nodes and
decisions indicate whether these nodes are in the same or distinct
components

I The inference problem assumes the form of the np-hard minimum cost
multicut problem

I Local search algorithms for tackling this problem are greedy joining, greedy
moving, and greedy moving using the technique of Kernighan and Lin.

