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Classifying

Contents.

» This part of the course introduces the problem of classifying data w.r.t. any
given finite number of classes.

» This problem is introduced as an unsupervised learning problem
w.r.t. constrained data whose feasible labelings are characteristic functions
of maps.
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Classifying

We consider
» A finite, non-empty set A whose elements we seek to classify

» A finite, non-empty set B of class labels

Learning to classify the elements of A into classes labeled by the elements of B
consists in learning a map ¢ : A — B that assigns to every element a € A
precisely one class label ¢(a) € B.

Maps ¢: A — B are precisely those subsets of ¢ C A x B that satisfy

Vac Abe B: (a,b) €¢p (D
Va€ AVb,b' € B: (a,b)€p A (a,b)€p = b=1". (2)

They are characterized by those functions y : A x B — {0, 1} that satisfy

Va € A: Zyabzl . 3

beB
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Classifying

We reduce the problem of learning and inferring maps to the problem of learning
and inferring decisions, by defining constrained data (.S, X, z,Y) with

S=AxB (4)

Va € A: Zyab=1} . (5)

beB

Y= {y € {0,1}°

More specifically, we consider
» a finite, non-empty set V, called a set of attributes

> the attribute space X = B x RY such that, for any (a,b) € A x B, the
class label b is the first attribute of (a,b), i.e.:

Yac AVbe B3z €RY:  za = (b,1) (6)
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Classifying

Familiy of functions

We consider linear functions with a separate set of coefficients for every class
label. Specifically, we consider © = RZ*V and f: © — R¥ such that

VoeOVbe BV R fo((b2) =D Opydv=(0h,2) . (7)
veEV
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Classifying

Xab

veV

ebv O

O Yab

a€ A

beB

» For any (a,b) € A x B, let X,; be a random variable whose value is a

Oz

Random Variables

vector o, € B x RY, the attribute vector of (a,b).

» For any (a,b) € A x B, let Yy, be a random variable whose value is a
binary number yq5 € {0, 1}, called the decision of classifying a as b

» For any b € B and any v € V, let O, be a random variable whose value is
a real number 0y, € R, a parameter of the function we seek to learn
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Classifying

veV

Xab

®bv O

O Yab

a€ A

beB

> Let Z be a random variable whose value is a subset Z C {0,1}**? called
the set of feasible decisions. For multiple label classification, we are
interested in Z = ), the set of the characteristic functions of all maps from

A to B.

Oz

Random Variables
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Classifying

P(X,Y,2,0)=P(Z|Y) [[P(Yar | Xa5,0) [[P(Or0) [ P(Xas)

(a,b)eAxB

Xab
ebv O O Yab
veV a€ A
beB
Oz
Factorization

(b,u)€EBXV  (a,b)eAXB
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Classifying

Factorization

» Supervised learning:

P(X,Y,Z,0
P(@'X’Y’”:W

P(Z]Y)P(Y | X,0) P(X) P(©)
P(Z| X,Y)P(X,Y)

P(Z|Y)P(Y | X,0) P(X) P(©)
P(Z|Y)P(X,Y)

©) P(X) P(©)

(X,Y)

P(Y | X,0)P(©)

= J] POwlIXw0) J[ PO

(a,b)EAXB (b,v)EBXV

_PY X
P
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Classifying

Factorization
» Inference:
P(X,Y,Z,0
PY'|X,2,6) = W
_P(Z|Y)P(Y|X,0)P(X)PO)
P(X7 Z7 6)

x P(Z|Y)P(Y | X,0)

=PZ|Y) ][] POV l|Xaw,0©)
(a,b)eAxXB
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Classifying

Distributions
» Logistic distribution
1
Ya € AVb € B: pYab‘Xabve(l) = m (8)
1 [
=)
Q
S 05
K
=
0 ! ! ! ! !
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Classifying
Distributions

» Normal distribution with ¢ € R™:

1 —037 /202
Vobe BYveV: Opy) = ———e v 9
oy, (On) = —= ©)
0.4 R
5
~ 0.2 1
o]
S
U ! ! ! ! ! il
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Classifying

Distributions

» Uniform distribution on a subset

1 ifyez

VZ C {0,137 F vy € (0,1} pry(Zy) .
0 otherwise

Note that pzy (), y) is non-zero iff the relation vy~ (1) C A x B is a map.
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Classifying

Lemma. Estimating maximally probable parameters 6, given attributes x and
decisions y, i.e.,

argmax pe|x,y,z(0,z,y,Y)
PeRBXV

separates into | B| independent l2-regularized logistic regression problems, each
w.r.t. parameters in RY.
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Classifying

Proof. Analogous to the case of deciding, we now obtain:

argmax pe|x,v,z(0,z,y,))
9cRBXV

= argmin Z (_yab fo(zap) +log (1 + 2f9(%b)))

BXV
HEREX (a,b)EAXB

log e

sl CIIER

Consider the unique ' : A x B — RV such that, for any (a,b) € A x B, we
have x4 = (b, x};). Now:

. B / (0y.,5%,) 1Og€
iy 30 (vt aia) +log (1+207T)) + S0 0]
(a,b)eAXB
v lo
. 0., loge
- ity 3 (35 (otocts1on(1200)) 4 S5y
beB \a€cA
. o 1
= min (Z (fyabwb.,x;b) + log (1+2<0b., ab))) 08;6”9 |2>
0p.ERV
beB acA
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Classifying

Lemma. For any constrained data as defined above, any 8 € RE*V and any
J:Ax B —{0,1}, § is a solution to the inference problem

min Z L(fo(zab), Yab) (10)

VEY abyeAxB
iff there exists an ¢ : A — B such that

. ’
Vae A:  ¢(a) € max (O, Tap) (11)

and

V(a,b) e AX B: gap=1 < pa)=5b . (12)
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(a,b)eAXB

>

(a,b)eAxB

=2 (-

acAbeEB

Classifying

L(fe(xab)vyab)

(L(fo(xab), 1) Yab + L(fo(2av), 0) (1 = yab))
(L(fe (wab), 1) = L(fo(xab),0)) Yar + const.
(—fo(zab)) Yav

(—{Bb-, 24p)) Yab

0b ) xab Yab

Tab

= (ba x:zb)
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Classifying

Summary.

» Classification can be cast as an unsupervised learning problem
w.r.t. constrained data defined such that the feasible labelings are
characteristic functions of maps.

» In the special case of supervised learning and the logistic loss function, this
problem separates into as many independent independent logistic regression
problems as there are classes. This is commonly called one-versus-rest
learning.
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