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Supervised Structured Learning

Contents. This part of the course is about structured data, the structured
learning problem and the structured inference problem.
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Supervised Structured Learning

Motivation. Even the most general learning and inference problem
w.r.t. constrained data (S,X, x,Y) we have considered is too restrictive for
certain applications:

I Attributes xs ∈ X are defined for single elements s ∈ S only.

I Dependencies between decisions ys, ys′ ∈ {0, 1} for distinct s, s′ ∈ S are
only due to hard constraints definded by the feasible set Y ⊂ {0, 1}S .

Example: Pixel classification: Given a digital image, we need to decide for every
pixel s ∈ S, by the contents of the image around that pixel, whether the pixel is
of interest (ys = 1) or not of interest (ys = 0).

Typically, decisions at neighboring pixels s, s′ ∈ S are more likely to be equal
(ys = ys′) than unequal (ys 6= ys′), and we wish to learn how this increased
probability depends on the contents of the image.

The mathematical abstractions of learning we have considered so far are
insufficient to express these dependencies.
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Supervised Structured Learning

In order to lift this restriction, we will define the supervised structured learning
problem and the structured inference problem in which

I attributes are associated with subsets of S

I decisions can be tied by probabilistic dependencies.

More specifically, we will

I introduce a family H : Θ→ RX×Y of functions that quantify by Hθ(x, y)
how incompatible attributes x ∈ X are with a combination of decisions
y ∈ {0, 1}S

I define supervised structured learning as a problem of finding one function
from this family

I define structured inference as the problem of finding a combination of
decisions y ∈ {0, 1}S that minimizes Hθ(x, ·).
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Supervised Structured Learning
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Definition. A triple (S, F,E) is called a factor graph with variable nodes S
and factor nodes F iff S ∩ F = ∅ and (S ∪ F,E) is a bipartite graph such that
∀e ∈ E ∃s ∈ S ∃f ∈ F : e = {s, f}.
I For any factor node f ∈ F , we denote by Sf = {s ∈ S | {s, f} ∈ E} the

set of those variable nodes that are neighbors of f .

I For any variable node s ∈ S, we denote by Fs = {f ∈ F | {s, f} ∈ E} the
set of those factor nodes that are neighbors of s.
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Supervised Structured Learning

0̄ 1̄ 2̄

01 120 1 2

S

F

Definition. A tuple T = (S, F,E, {Xf}f∈F , x) is called unlabeled structured
data iff the following conditions hold:

I (S, F,E) is a factor graph

I Every set Xf is non-empty, called the attribute space of f

I x ∈
∏
f∈F Xf , where the Cartesian product

∏
f∈F Xf is called the

attribute space of T .

A tuple (S, F,E, {Xf}f∈F , x, y) is called labeled structured data iff
(S, F,E, {Xf}f∈F , x) is unlabeled structured data, and y ∈ {0, 1}S .
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Supervised Structured Learning
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Definition. W.r.t. any labeled structured data (S, F,E, {Xf}f∈F , x, y),

I the attribute space X =
∏
f∈F Xf

I the set Y = {0, 1}S

I any Θ 6= ∅ and family of functions H : Θ→ RX×Y

I any R : Θ→ R+
0 , called a regularizer

I any L : RY × Y → R+
0 , called a loss function

I any λ ∈ R+
0 , called a regularization parameter,

the instance of the supervised structured learning problem has the form

inf
θ∈Θ

λR(θ) + L(Hθ(x, ·), y) (1)
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Supervised Structured Learning
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Definition. With respect to

I any unlabeled structured data T = (S, F,E, {Xf}f∈F , x)

I any Ĥ : X × {0, 1}S → R
the instance of the structured inference problem has the form

min
y∈{0,1}S

Ĥ(x, y) (2)
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Supervised Structured Learning

Summary.

I Structured data consists of a factor graph (S, F,E) and attributes
xf ∈ Xf for every factor f ∈ F .

I The structured learning problem is an optimization problem whose feasible
solutions θ define functions Hθ : X × Y → R whose values Hθ(x, y)
quantify an incompatibility of attributes x ∈ X and combinations of
decisions y ∈ {0, 1}S .

I The structured inference problem consists in finding decisions y ∈ {0, 1}S
compatible with given attributes x ∈ X, by minimizing a given
incompatibility function Ĥ(x, ·).
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Conditional Graphical Models

Contents. This part of the course is about supervised structured learning of
conditional graphical models.
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Conditional Graphical Models

Definition. For any factor graph G = (S, F,E), a function H : {0, 1}S → R is
said to factorize w.r.t. G iff, for every f ∈ F , there exists a function a function
hf : {0, 1}Sf → R, called a factor of H, such that

∀y ∈ {0, 1}S : H(y) =
∑
f∈F

hf (ySf ) . (3)

Example: A function H : {0, 1}S → R factorizes w.r.t. the factor graph

0̄ 1̄ 2̄

01 120 1 2

S

F

iff there exist suitable functions h0, h01, h1, h12, h2 such that, for any
y ∈ {0, 1}S : H(y) = h0(y0̄) + h1(y1̄) + h2(y2̄) + h01(y0̄, y1̄) + h12(y1̄, y2̄).
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Conditional Graphical Models

Definition. A tuple (S, F,E, {Xf}f∈F ,Θ, {hf}f∈F ) is called a conditional
graphical model with attribute space X :=

∏
f∈F Xf and parameter space Θ

iff the following conditions hold:

I (S, F,E) is a factor graph

I Θ 6= ∅
I For every f ∈ F :

I Xf is non-empty, called the attribute space of f

I hf : Θ→ RXf×{0,1}
Sf

, called a factor.

The family H : Θ→ RX×{0,1}
S

such that

∀θ ∈ Θ ∀x ∈ X ∀y ∈ {0, 1}S : Hθ(x, y) =
∑
f∈F

hfθ(xf , ySf ) (4)

is called the family of energy functions of the conditional graphical model.
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Conditional Graphical Models

Family of Functions

I We consider a conditional graphical model (S, F,E, {Xf}f∈F ,Θ, {hf}f∈F )
and its family H of energy functions.

I We assume that Θ is a finite-dimensional, real vector space, i.e., there
exists a finite, non-empty set J and Θ = RJ .

I We assume that every function hf is linear in Θ, i.e., for every f ∈ F , there
exists a ϕf : Xf × {0, 1}Sf → RJ such that for any xf ∈ Xf , any
ySf ∈ {0, 1}

Sf and any θ ∈ Θ:

hfθ(xf , ySf ) = 〈θ, ϕf (xf , ySf )〉 (5)



14/37

Conditional Graphical Models

For convenience, we define ξ : X × {0, 1}S → RJ such that for any x ∈ X and
any y ∈ {0, 1}S :

ξ(x, y) =
∑
f∈F

ϕf (xf , ySf ) (6)

Thus, we obtain for any θ ∈ Θ, any x ∈ X and any y ∈ Y :

Hθ(x, y) =
∑
f∈F

hfθ(xf , ySf )

=
∑
f∈F

〈θ, ϕf (xf , ySf )〉

=

〈
θ,

∑
f∈F

ϕf (xf , ySf )

〉
= 〈θ, ξ(x, y)〉 (7)
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Conditional Graphical Models

X

YΘj
j ∈ J

Probabilistic Model

I Let X be a random variable whose value is an element x ∈ X of the
attribute space.

I Let Y be a random variable whose value is a combination of decisions
y ∈ {0, 1}S

I For any j ∈ J , let Θj a random variable whose value is a parameter θj ∈ R
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Conditional Graphical Models

Factorization

I We assume:

P (X ,Y,Θ) = P (Y | X ,Θ)P (X )
∏
j∈J

P (Θj) (8)

I Thus:

P (Θ | X ,Y) =
P (X ,Y,Θ)

P (X ,Y)

=
P (Y | X ,Θ)P (X )

∏
j∈J P (Θj)

P (X ,Y)

∝ P (Y | X ,Θ)
∏
j∈J

P (Θj) (9)
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Conditional Graphical Models

Distributions

Definition. For any conditional graphical model, the partition function
Z : X ×Θ→ R and Gibbs distribution p : X × {0, 1}S ×Θ→ [0, 1] are defined
by the forms

Z(x, θ) =
∑

y∈{0,1}S
e−Hθ(x,y) (10)

p(y, x, θ) =
1

Z(x, θ)
e−Hθ(x,y) (11)

We consider a σ ∈ R+ and

pY|X ,Θ(y, x, θ) =
1

Z(x, θ)
e−Hθ(x,y) (12)

∀j ∈ J : pΘj (θj) =
1

σ
√

2π
e−θ

2
j /2σ

2

. (13)



18/37

Conditional Graphical Models

Lemma. Estimating maximally probable parameters θ, given attributes x and
decisions y, i.e.,

argmax
θ∈RJ

pΘ|X ,Y(θ, x, y)

is identical to the supervised structured learning problem w.r.t. L, R and λ such
that

L(Hθ(x, ·), y) = Hθ(x, y) + lnZ(x, θ) (14)

= Hθ(x, y) + ln
∑

y′∈{0,1}S
e−Hθ(x,y′) (15)

= 〈θ, ξ(x, y)〉+ ln
∑

y′∈{0,1}S
e−〈θ,ξ(x,y

′)〉 (16)

R(θ) = ‖θ‖22 (17)

λ =
1

2σ2
(18)
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Conditional Graphical Models

Lemma: The first and second partial derivatives of the logarithm of the partition
function have the forms

∂

∂θj
lnZ =

1

Z(x, θ)

∑
y′∈{0,1}S

(−ξj(x, y′))e−〈θ,ξ(x,y
′)〉 (19)

= Ey′∼pY|X ,Θ(−ξj(x, y′)) (20)

∂2

∂θj ∂θk
lnZ = Ey′∼pY|X ,Θ(ξj(x, y

′)ξk(x, y′))

− Ey′∼pY|X ,Θ(ξj(x, y
′))Ey′∼pY|X ,Θ(ξk(x, y′))

= COVy′∼pY|X ,Θ(ξj(x, y
′), ξk(x, y′)) (21)

Lemma: Supervised structured learning of a conditional graphical model is a
convex optimization problem.
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Lemma: Estimating maximally probable decisions y, given attributes x and
parameters θ, i.e.

argmax
y∈{0,1}S

pY|X ,Θ(x, y, θ) (22)

is identical to the structured inference problem with Ĥ(x, y) = Hθ(x, y).
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Conditional Graphical Models

Summary. Supervised structured learning of conditional graphical models whose
factors are linear functions is a convex optimization problem.
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Conditional Graphical Models II

Contents. This part of the course introduces algorithms for supervised
structured learning of conditional graphical models.
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Conditional Graphical Models II

On the one hand, supervised structured learning of conditional graphical models
whose factors are linear functions is a convex optimization problem.

Thus, it can be solved exactly by means of the steepest descent algorithm with
a tolerance parameter ε ∈ R+

0 :

θ := 0
repeat

d := ∇θL(Hθ(x, ·), y)
η := argminη′∈R L(Hθ−η′d(x, ·), y) (line search)
θ := θ − ηd
if ‖d‖ < ε

return θ
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Conditional Graphical Models II

On the other hand, computing the gradient näıvely takes time O(2|S|):

−
∂

∂θj
lnZ = Ey′∼pY|X ,Θ

(ξj(x, y
′))

=
1

Z(x, θ)

∑
y′∈{0,1}S

ξj(x, y
′) e−〈θ,ξ(x,y

′)〉

=
1

Z(x, θ)

∑
y′∈{0,1}S

∑
f∈F

ϕfj(xf , y
′
Sf

) e−〈θ,ξ(x,y
′)〉

=
1

Z(x, θ)

∑
f∈F

∑
y′
S(f)
∈{0,1}S(f)

∑
y′
S\S(f)

∈{0,1}S\S(f)

ϕfj(xf , y
′
S(f)) e

−〈θ,ξ(x,y′)〉

=
∑
f∈F

∑
y′
S(f)
∈{0,1}S(f)

ϕfj(xf , y
′
S(f))

1

Z(x, θ)

∑
y′
S\S(f)

∈{0,1}S\S(f)

e−〈θ,ξ(x,y
′)〉

=
∑
f∈F

∑
y′
S(f)
∈{0,1}S(f)

ϕfj(xf , y
′
S(f)) pYS(f)|X ,Θ(y′S(f) | x, θ)

=
∑
f∈F

Ey′
S(f)
∼pYS(f)|X ,Θ

(ϕfj(xf , y
′
S(f)))
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Conditional Graphical Models II

Computing the gradient requires that we compute

I the partition function

Z(x, θ) =
∑

y′∈{0,1}S
e−〈θ,ξ(x,y

′)〉 (23)

I for every factor f ∈ F , the so-called factor marginal

pYS(f)|X ,Θ(y′S(f) | x, θ) =
1

Z(x, θ)

∑
y′
S\S(f)

∈{0,1}S\S(f)

e−〈θ,ξ(x,y
′)〉 (24)

I for every factor f ∈ F , the expectation value∑
y′
S(f)
∈{0,1}S(f)

ϕfj(xf , y
′
S(f)) pYS(f)|X ,Θ(y′S(f) | x, θ) . (25)



26/37

Conditional Graphical Models II

The challenge is to sum the function

ψθ(x, y
′) := e−〈θ,ξ(x,y

′)〉 (26)

over assignments of 0 or 1 to linearly many (24) or all (23) variables y′.

Defining

ψfθ(xf , y
′
S(f)) = e

−〈θ,ϕf (xf ,y
′
S(f))〉

(27)

we obtain

ψθ(x, y
′) =e−〈θ,ξ(x,y

′)〉

= e−
∑
f∈F 〈θ,ϕf (xf ,yS(f))〉 (28)

=
∏
f∈F

e−〈θ,ϕf (xf ,yS(f))〉 (29)

=
∏
f∈F

ψfθ(xf , yS(f)) . (30)
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Conditional Graphical Models II

Thus, the challenge in (24) and (23) is to compute a sum of a product of
functions. Specifically:

Z(x, θ) =
∑

y′∈{0,1}S

∏
f∈F

ψfθ(xf , yS(f)) (31)

pYS(f)|X ,Θ(y′S(f) | x, θ) =
1

Z(x, θ)

∑
y′
S\S(f)

∈{0,1}S\S(f)

∏
f∈F

ψfθ(xf , yS(f)) (32)

I One approach to tackle this problem is to sum over variables recursively.

I In order to avoid redundant computation, Kschischang et al. (2001) define
partial sums.



28/37

Conditional Graphical Models II

Definition (Kschischang et al. (2001)) For any variable node s ∈ S and any
factor node f ∈ F , the functions

ms→f ,mf→s : {0, 1} → R , (33)

called messages, are defined such that for all ys ∈ {0, 1}:

ms→f (ys) =
∏

f ′∈F (s)\{f}

mf ′→s(ys) (34)

mf→s(ys) =
∑

yS(f)\{s}

ψfθ(xf , yS(f))
∏

s′∈S(f)\{s}

ms′→f (ys′) (35)
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Conditional Graphical Models II

Lemma. If the factor graph is acyclic, messages are defined recursively by (34)
and (35), beginning with the messages from leaves. Moreover, for any s ∈ S and
any f ∈ F :

Z(x, θ) =
∑

ys∈{0,1}

∏
f ′∈F (s)

mf ′→s(ys) (36)

pYS(f)|X ,Θ(y′S(f) | x, θ) =
1

Z(x, θ)
ψfθ(xf , yS(f))

∏
s′∈S(f)

ms′→f (ys′) (37)

The recursive computation of messages is known as message passing.
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Conditional Graphical Models II

Summary

I For conditional graphical models whose factor graph is acylic, the
supervised structured learning problem can be solved efficiently by means of
the steepest descent algorithm and message passing.

I For conditional graphical models whose factor graph is cyclic, the definition
of messages is cyclic as well. The partition function and marginals cannot
be computed by message passing in general.

I A heuristic without guarantee of correctness or even convergence is to
initialize all messages as normalized constant functions and to update
messages according to some schedule, e.g., synchronously. This heuristic is
commonly known as loopy belief propagation.
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Conditional Graphical Models III

Contents. This part of the course introduces algorithms for supervised
structured inference with conditional graphical models.
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Conditional Graphical Models III

The inference problem w.r.t. a conditional graphical model has the form of an
unconstrained binary optimization problem:

argmin
y∈{0,1}S

Hθ(x, y) (38)

It is NP-hard. (This can be shown, e.g., by reduction of binary integer
programming, which is one of Karp’s 21 problems).
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Conditional Graphical Models III

We consider transformations that change one decision at a time:

Definition. For any s ∈ S, let flips : {0, 1}S → {0, 1}S such that for any
y ∈ {0, 1}S and any t ∈ S:

flips[y](t) =

{
1− yt if t = s

yt otherwise
. (39)

The greedy local search algorithm w.r.t these transformations is known as
Iterated Conditional Modes, or ICM (Besag 1986).

y′ = icm(y)

choose s ∈ argmin
s′∈S

Hθ(x,flips′ [y])−Hθ(x, y)

if Hθ(x,flips[y]) < Hθ(x, y)
y′ := icm(flips[y])

else
y′ := y
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Conditional Graphical Models III

I The inference problem consists in computing the minimum of a sum of
functions:

argmin
y∈{0,1}S

Hθ(x, y)

= argmin
y∈{0,1}S

∑
f∈F

hfθ(xf , yS(f)) (40)

I This problem is analogous to that of computing the sum of a product of
functions (from the previous lecture) in that both (R,min,+) and (R,+, ·)
are commutative semi-rings.

I This analogy is sufficient to transfer the idea of message passing, albeit
with messages adapted to the (R,min,+) semi-ring:
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Conditional Graphical Models III

Definition. (Kschischang 2001) For any variable node s ∈ S and any factor
node f ∈ F , the functions

µs→f , µf→s : {0, 1} → R , (41)

called messages, are defined such that for all ys ∈ {0, 1}:

µs→f (ys) =
∑

f ′∈F (s)\{f}

µf ′→s(ys) (42)

µf→s(ys) = min
yS(f)\{s}

ψfθ(xf , yS(f)) +
∑

s′∈S(f)\{s}

µs′→f (ys′) (43)
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Conditional Graphical Models III

Lemma. If the factor graph is acyclic, messages are defined recursively by (42)
and (43), beginning with the messages from leaves. Moreover, for any s ∈ S:

argmin
y∈{0,1}S

Hθ(x, y)

= min
y∈{0,1}S

∑
f∈F

hfθ(xf , yS(f))

= min
ys∈{0,1}

∑
f ′∈F (s)

µf ′→s(ys) (44)

Proof. Analogous to that of Lemma 18 in the lecture notes.
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Conditional Graphical Models III

Summary

I For conditional graphical models whose factor graph is acylic, the inference
problem can be solved efficiently by means of min-sum message passing.

I For conditional graphical models whose factor graph is cyclic, one local
search algorithm for the inference problem is known as Iterated
Conditional Modes (ICM).


