Machine Learning 1 – Exercise 1

Machine Learning for Computer Vision TU Dresden

Deciding with disjunctive normal forms (DNFs)

- a) Let $V = \{0, 1, 2, 3\}$. State the V-variate DNF defined by $\theta = \{(\emptyset, \{0\}), (\{0\}, \{3\}), (\{0, 3\}, \{1, 2\})\},$ its length and its depth.
- b) State two distinct DNFs such that the function defined by these DNFs equals the function g defined in Tab. 1 below.
- c) How many distinct DNFs in n = |V| variables exist?
- d) Prove the following universality property: For any finite, non-empty set V and any $f: \{0,1\}^V \to \{0,1\}$, there exists a V-variate DNF defining f.

Table 1: Defined by the value table below is a Boolean function $g:\{0,1\}^V \to \{0,1\}$ with $V=\{0,1,2\}$.

x_0	x_1	x_2	g(x)
0	0	0	0
1	0	0	1
0	1	0	0
1	1	0	1
0	0	1	1
1	0	1	0
0	1	1	1
1	1	1	0