Computer Vision I

Bjoern Andres, Holger Heidrich, Jannik Presberger

Machine Learning for Computer Vision TU Dresden

Winter Term 2023/2024

Digital images

For any $n \in \mathbb{N}$, let $[n]:=\{0, \ldots, n-1\}$.
Definition 1. A digital image of width $n_{0} \in \mathbb{N}$ and height $n_{1} \in \mathbb{N}$ with colors C is a map $f:\left[n_{0}\right] \times\left[n_{1}\right] \rightarrow C$.

Examples.

$$
\begin{array}{ll}
\text { Gray levels } & C=\{0, \ldots, 255\} \\
\text { RGB colors } & C=\{0, \ldots, 255\}^{3} \\
\text { Real numbers } & \text { E.g. } C=\mathbb{R} \text { or } C=[0,1] \\
\text { Real tuples } & \text { E.g. } C=\mathbb{R}^{n} \text { or } C=[0,1]^{n}
\end{array}
$$

Definition 2. For any digital image $f:\left[n_{0}\right] \times\left[n_{1}\right] \rightarrow C$, consider the graph $G=(V, E)$ with $V=\left[n_{0}\right] \times\left[n_{1}\right]$ and such that for any $u, v \in V$ we have $\{u, v\} \in E$ if and only if $|u-v|=1$. It is called the pixel grid graph of the image. Its nodes are called the pixels of the image.

Point operator

Definition 3. For any $n_{0}, n_{1} \in \mathbb{N}$ and any set C, a point operator on digital images of width n_{0}, height n_{1} and with colors C is a function

$$
\begin{equation*}
\varphi: C^{\left[n_{0}\right] \times\left[n_{1}\right]} \rightarrow C^{\left[n_{0}\right] \times\left[n_{1}\right]} \tag{1}
\end{equation*}
$$

such that there exists a function

$$
\begin{equation*}
\chi: C \times\left[n_{0}\right] \times\left[n_{1}\right] \rightarrow C \tag{2}
\end{equation*}
$$

such that for every digital image $f:\left[n_{0}\right] \times\left[n_{1}\right] \rightarrow C$ and every pixel $(x, y) \in\left[n_{0}\right] \times\left[n_{1}\right]$, we have

$$
\begin{equation*}
\varphi(f)(x, y)=\chi(f(x, y), x, y) \tag{3}
\end{equation*}
$$

Remark. The color $\varphi(f)(x, y)$ of the image $\varphi(f)$ at the pixel (x, y) depends only on the color $f(x, y)$ of the image f at that same location, and on the location (x, y) itself.
Example. Every $\xi: C \rightarrow C$ defines a point operator $\varphi_{\xi}: f \mapsto \xi \circ f$.

Gamma Operator

Definition 4. Let $C=[0,1]$. For any $\gamma \in(0, \infty)$ and the function $\xi: C \rightarrow C: c \mapsto c^{\gamma}$, the point operator $\varphi_{\xi}: f \mapsto \xi \circ f$ is called the gamma operator.

$$
\gamma=\frac{1}{4}
$$

$$
\gamma=\frac{1}{2}
$$

$\gamma=1$

$\gamma=2$
$\gamma=4$

Histogram equilibration

Definition 5. The histogram of a digital image $f:\left[n_{0}\right] \times\left[n_{1}\right] \rightarrow C \subseteq \mathbb{R}$ is the function $h: C \rightarrow \mathbb{N}_{0}$ such that for any $c \in C$ we have

$$
\begin{equation*}
h(c)=\left|\left\{r \in\left[n_{0}\right] \times\left[n_{1}\right] \mid f(r)=c\right\}\right| \tag{4}
\end{equation*}
$$

The cumulative distribution of colors is the function $H: C \rightarrow[0,1]$ such that for any $c \in C$ we have

$$
\begin{equation*}
H(c)=\frac{1}{n_{0} n_{1}} \sum_{\substack{c^{\prime} \in f\left(\left[n_{0}\right] \times\left[n_{1}\right]\right) \\ c^{\prime} \leq c}} h(c) \tag{5}
\end{equation*}
$$

Histogram equilibration

Definition 5. The histogram of a digital image $f:\left[n_{0}\right] \times\left[n_{1}\right] \rightarrow C \subseteq \mathbb{R}$ is the function $h: C \rightarrow \mathbb{N}_{0}$ such that for any $c \in C$ we have

$$
\begin{equation*}
h(c)=\left|\left\{r \in\left[n_{0}\right] \times\left[n_{1}\right] \mid f(r)=c\right\}\right| \tag{4}
\end{equation*}
$$

The cumulative distribution of colors is the function $H: C \rightarrow[0,1]$ such that for any $c \in C$ we have

$$
\begin{equation*}
H(c)=\frac{1}{n_{0} n_{1}} \sum_{\substack{c^{\prime} \in f\left(\left[n_{0}\right] \times\left[n_{1}\right]\right) \\ c^{\prime} \leq c}} h(c) \tag{5}
\end{equation*}
$$

Histogram equilibration

Definition 6. For any $C=\left[c^{-}, c^{+}\right] \subseteq \mathbb{R}$ and any monotonous function $H: C \rightarrow[0,1]$ such that $H\left(c^{+}\right)=1, H$-equilibration is the function

$$
\begin{aligned}
\xi_{H}: \quad\left[c^{-}, c^{+}\right] & \rightarrow\left[c^{-}, c^{+}\right] \\
c & \mapsto c^{-}+\left(c^{+}-c^{-}\right) H(c)
\end{aligned}
$$

For fixed H and fixed $n_{0}, n_{1} \in \mathbb{N}, H$-equilibration defines a point operator that we call the H-equilibrator:

$$
\begin{aligned}
\varphi_{\xi_{H}}: \quad C^{\left[n_{0}\right] \times\left[n_{1}\right]} & \rightarrow C^{\left[n_{0}\right] \times\left[n_{1}\right]} \\
f & \mapsto \xi_{H} \circ f
\end{aligned}
$$

For any digital image f with the cumulative distribution H of colors C, we call the image $\varphi_{\xi_{H}}(f)$ the self-equilibration of f.

Question. Is self-equilibration a point operator?

Histogram equilibration

Histogram equilibration

Linear operators
Lemma 1. An operator $\varphi: \mathbb{R}^{\left[n_{0}\right] \times\left[n_{1}\right]} \rightarrow \mathbb{R}^{\left[n_{0}\right] \times\left[n_{1}\right]}$ is linear if and only if there exists $a:\left(\left[n_{0}\right] \times\left[n_{1}\right]\right)^{2} \rightarrow \mathbb{R}$ such that for any (image) $f \in \mathbb{R}^{\left[n_{0}\right] \times\left[n_{1}\right]}$ and any (pixel) $(x, y) \in\left[n_{0}\right] \times\left[n_{1}\right]$, we have

$$
\begin{gather*}
\varphi(f)(x, y)=\sum_{j=0}^{n_{0}-1} \sum_{k=0}^{n_{1}-1} a_{x y j k} f(j, k) \tag{6}\\
\varphi(f)(x, y)=\square \\
a_{x y \cdot}
\end{gather*} \sqrt{f}
$$

More restrictive than such an operator with $\left(n_{0} n_{1}\right)^{2}$ coefficients is:

$$
\varphi(f)(x, y)=\begin{aligned}
& \square \\
& g_{x y}
\end{aligned} \quad \begin{aligned}
& \bullet(x, y) \\
& \hdashline \\
& \hdashline
\end{aligned}
$$

Linear operators

Even more restrictive is the typical setting in which we are given $m_{0}, m_{1} \in \mathbb{N}$ and $g:\left[m_{0}\right] \times\left[m_{1}\right] \rightarrow \mathbb{R}$ and

$$
\begin{aligned}
\varphi(f)(x, y)= & \square \square(x, y) \\
& =\sum_{j=0}^{m_{0}-1} \sum_{k=0}^{m_{1}-1} g(j, k) f\left(x+j-\left\lfloor\frac{m_{0}-1}{2}\right\rfloor, y+k-\left\lfloor\frac{m_{1}-1}{2}\right\rfloor\right)
\end{aligned}
$$

Remark 1.

1. f needs to be extended in order for $\varphi(f)$ to be well-defined.
2. g uniquely defines a linear operator φ_{g}.
3. Its application to images f defines a binary operation $f \otimes g:=\varphi_{g}(f)$.
4. g is itself a digital image.

Definition 7. For the set $\mathbb{R}^{\mathbb{Z}}$ of all functions from \mathbb{Z} to \mathbb{R}, convolution is the operation $*: \mathbb{R}^{\mathbb{Z}} \times \mathbb{R}^{\mathbb{Z}} \rightarrow \mathbb{R}^{\mathbb{Z}}$ such that for any $f, g: \mathbb{Z} \rightarrow \mathbb{R}$ and any $t \in \mathbb{Z}$:

$$
\begin{equation*}
(f * g)(t)=\sum_{s=-\infty}^{\infty} f(t+s) g(-s) \tag{7}
\end{equation*}
$$

For the set $\mathbb{R}^{\mathbb{Z} \times \mathbb{Z}}$ of all functions from $\mathbb{Z} \times \mathbb{Z}$ to \mathbb{R}, convolution is the operation $*: \mathbb{R}^{\mathbb{Z} \times \mathbb{Z}} \times \mathbb{R}^{\mathbb{Z} \times \mathbb{Z}} \rightarrow \mathbb{R}^{\mathbb{Z} \times \mathbb{Z}}$ such that for any $f, g: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{R}$ and any $(x, y) \in \mathbb{Z} \times \mathbb{Z}$:

$$
\begin{equation*}
(f * g)(x, y)=\sum_{j=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} f(x+j, y+k) g(-j,-k) \tag{8}
\end{equation*}
$$

Lemma 2. For any $f, g, h \in \mathbb{R}^{\mathbb{Z} \times \mathbb{Z}}$ and any $\alpha \in \mathbb{R}$, we have:

$$
\begin{array}{rlr}
f * g & =g * f & \text { (commutativity) } \\
f *(g * h) & =(f * g) * h & \text { (associativity) } \\
f *(g+h) & =(f * g)+(f * h) & \text { (distributivity) } \\
\alpha(f * g) & =(\alpha f) * g & \text { (associativity with .) }
\end{array}
$$

Linear operators

Definition 8. For any $C \neq \emptyset$, the operator $X: \bigcup_{n_{0}, n_{1} \in \mathbb{N}} C^{\left[n_{0}\right] \times\left[n_{1}\right]} \rightarrow C^{\mathbb{Z} \times \mathbb{Z}}$ such that for any $n_{0}, n_{1} \in \mathbb{N}$, any $f:\left[n_{0}\right] \times\left[n_{1}\right] \rightarrow C$ and any $(x, y) \in \mathbb{Z}^{2}$ we have

$$
X(f)(x, y)= \begin{cases}f(x, y) & \text { if }(x, y) \in\left[n_{0}\right] \times\left[n_{1}\right] \tag{13}\\ 0 & \text { otherwise }\end{cases}
$$

is called the infinite 0 -extension of digital images.
Definition 9. For any $C \neq \emptyset$ and any $n_{0}, n_{1} \in \mathbb{N}$, the map $R_{n_{0}, n_{1}}: C^{\mathbb{Z} \times \mathbb{Z}} \rightarrow C^{\left[n_{0}\right] \times\left[n_{1}\right]}$ such that for any $f: \mathbb{Z} \times \mathbb{Z} \rightarrow C$ and any $(x, y) \in\left[n_{0}\right] \times\left[n_{1}\right]$, we have $R_{n}(f)(x, y)=f(x, y)$ is called the (n_{0}, n_{1})-restriction of infinite digital images.

Linear operators

Definition 10. For any $j, k \in \mathbb{Z}$, the operator $S_{j k}: C^{\mathbb{Z} \times \mathbb{Z}} \rightarrow C^{\mathbb{Z} \times \mathbb{Z}}$ such that for any $x, y \in \mathbb{Z}$, we have $S_{j k}(f)(x, y)=f(x+j, y+k)$ is called the (x, y)-shift of infinite digital images.

Definition 11. The operator $L: C^{\mathbb{Z} \times \mathbb{Z}} \rightarrow C^{\mathbb{Z} \times \mathbb{Z}}$ such that for any $x, y \in \mathbb{Z}$, we have $L(f)(x, y)=f(-x,-y)$ is called the reflection of infinite digital images.

Definition 12. For any $n_{0}, n_{1}, m_{0}, m_{1} \in \mathbb{N}$, any $f \in C^{\left[n_{0}\right] \times\left[n_{1}\right]}$, any $g \in C^{\left[m_{0}\right] \times\left[m_{1}\right]}, d_{0}=-\left\lfloor\frac{m_{0}-1}{2}\right\rfloor$ and $d_{1}=-\left\lfloor\frac{m_{1}-1}{2}\right\rfloor$, the convolution of f and g is defined as

$$
\begin{equation*}
f * g:=R_{n_{0} n_{1}}\left(X(f) * S_{d_{0} d_{1}}(X(g))\right) \tag{14}
\end{equation*}
$$

Lemma 3. For any $n_{0}, n_{1}, m_{0}, m_{1} \in \mathbb{N}$, any $f \in C^{\left[n_{0}\right] \times\left[n_{1}\right]}$ and any $g \in C^{\left[m_{0}\right] \times\left[m_{1}\right]}$:

$$
\begin{equation*}
f \otimes g=f * L(g) \tag{15}
\end{equation*}
$$

Definition 13. For any $\sigma \in \mathbb{R}^{+}$and any $m \in \mathbb{N}_{0}$ (typically: $m \geq 3 \sigma$), for the function

$$
\begin{equation*}
w: \quad \mathbb{R} \rightarrow \mathbb{R}: \quad t \mapsto e^{-\frac{t^{2}}{2 \sigma^{2}}} \tag{16}
\end{equation*}
$$

and the number

$$
\begin{equation*}
N:=\sum_{j=-m}^{m} w(j) \tag{17}
\end{equation*}
$$

the functions

$$
\begin{array}{lll}
g_{0}: & {[2 m+1] \times[1] \rightarrow \mathbb{R}:} & (x, 0) \mapsto \frac{w(j-m)}{N} \\
g_{1}: & {[1] \times[2 m+1] \rightarrow \mathbb{R}:} & (0, y) \mapsto \frac{w(j-m)}{N} \tag{19}
\end{array}
$$

are called Gaussian averaging filters.

Linear operators

Linear operators
f

Linear operators

$$
2 f-\left(f * g_{0} * g_{1}\right)
$$

$$
\begin{gathered}
\sigma=1.0 \\
m=3
\end{gathered}
$$

Linear operators

Definition 14. The discrete derivatives of an infinite digital image $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{R}$ are defined as

$$
\begin{align*}
& \partial_{0} f:=g * d_{0} \tag{20}\\
& \partial_{1} f:=g * d_{1} \tag{21}
\end{align*}
$$

with

$$
\begin{align*}
d_{0} & =\frac{1}{2}(1,0,-1) \tag{22}\\
d_{1} & =\frac{1}{2}\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right) \tag{23}
\end{align*}
$$

The discrete gradient is defined as

$$
\begin{equation*}
\nabla f=\binom{\partial_{0} f}{\partial_{1} f} \tag{24}
\end{equation*}
$$

and $|\nabla f|=\sqrt{\left(\partial_{0} f\right)^{2}+\left(\partial_{1} f\right)^{2}}$ is commonly referred to as its magnitude.

Linear operators

$$
\sqrt{\left(f * d_{0}\right)^{2}+\left(f * d_{1}\right)^{2}}
$$

Non-linear operators

Definition 15. Let $n_{0}, n_{1} \in \mathbb{N}$, let $V=\left[n_{0}\right] \times\left[n_{1}\right]$ and let $C \subseteq \mathbb{R}$. Given

- a metric $d_{s}: V \times V \rightarrow \mathbb{R}_{0}^{+}$and a decreasing $w_{s}: \mathbb{R}_{0}^{+} \rightarrow[0,1]$
- a metric $d_{c}: C \times C \rightarrow \mathbb{R}_{0}^{+}$and a decreasing $w_{c}: \mathbb{R}_{0}^{+} \rightarrow[0,1]$
- a $N: V \rightarrow 2^{V}$ that defines for every pixel $v \in V$ a set $N(v) \subseteq V$ called the spatial neighborhood of v
- the $\nu: C^{V} \rightarrow \mathbb{R}^{V}$, called normalization, such that for any digital image $f: V \rightarrow C$ and any pixel $v \in V$:

$$
\begin{equation*}
\nu(f)(v)=\sum_{v^{\prime} \in N(v)} w_{s}\left(d_{s}\left(v, v^{\prime}\right)\right) w_{c}\left(d_{c}\left(f(v), f\left(v^{\prime}\right)\right)\right) \tag{25}
\end{equation*}
$$

the bilateral filter w.r.t. $d_{s}, w_{s}, d_{c}, w_{c}$ and N is the $\beta: C^{V} \rightarrow(\mathbb{R} C)^{V}$ such that for any digital image $f: V \rightarrow C$ and any pixel $v \in V$:

$$
\begin{equation*}
\beta(f)(v)=\frac{1}{\nu(f)(v)} \sum_{v^{\prime} \in N(v)} w_{s}\left(d_{s}\left(v, v^{\prime}\right)\right) w_{c}\left(d_{c}\left(f(v), f\left(v^{\prime}\right)\right)\right) f\left(v^{\prime}\right) \tag{26}
\end{equation*}
$$

Non-linear operators

Example.

- $d_{s}\left(v, v^{\prime}\right)=\left\|v-v^{\prime}\right\|_{2}$ and, for a filter parameter $\sigma_{s}>0$:

$$
\begin{equation*}
w_{s}(x)=\frac{1}{\sigma_{s} \sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2 \sigma_{s}^{2}}\right) \tag{27}
\end{equation*}
$$

- $d_{c}\left(g, g^{\prime}\right)=\left|g-g^{\prime}\right|$ and, for a filter parameter $\sigma_{c}>0$:

$$
\begin{equation*}
w_{c}(x)=\frac{1}{1+\frac{x^{2}}{\sigma_{c}^{2}}} \tag{28}
\end{equation*}
$$

- for a filter parameter $n \in \mathbb{R}_{0}^{+}$:

$$
\begin{equation*}
N(v)=\left\{v^{\prime} \in V \mid d_{s}\left(v, v^{\prime}\right) \leq n\right\} \tag{29}
\end{equation*}
$$

Non-linear operators

Definition 16. Let $n_{0}, n_{1} \in \mathbb{N}$, let $V=\left[n_{0}\right] \times\left[n_{1}\right]$, let $C \subseteq \mathbb{R}$ and let $N: V \rightarrow 2^{V}$ define for every pixel $v \in V$ a set $N(v) \subseteq V$ called the spatial neighborhood of v. The median operator wrt. N is the function $M: C^{V} \rightarrow C^{V}$ such that for any $f: V \rightarrow C$ and any $v \in V$:

$$
\begin{equation*}
M(f)(v)=\operatorname{median} f(N(v)) \tag{30}
\end{equation*}
$$

Non-linear operators

Noisy image

f

Filtered image

Non-linear operators

Morphological operators

- We may identify any binary infinite digital image $f: \mathbb{Z}^{2} \rightarrow\{0,1\}$ with its support set $f^{-1}(1)=\left\{v \in \mathbb{Z}^{2} \mid f(v)=1\right\}$.
- This allows us to apply operations from the field of binary mathematical morphology to binary infinite digital images.

Non-linear operators

${ }^{1}$ By courtesy of Stephan Grill and his lab at the MPI of Molecular Cell Biology and Genetics.

Non-linear operators

Definition 17. For any $A, B \subseteq \mathbb{Z}^{2}$, we define

$$
\begin{align*}
& A \ominus B:=\left\{v \in \mathbb{Z}^{2} \mid B+v \subseteq A\right\} \tag{31}\\
& A \oplus B:=\left\{v \in \mathbb{Z}^{2} \mid-B+v \cap A \neq \emptyset\right\} \tag{32}
\end{align*}
$$

and call these operations erosion and dilation. Moreover, we call the operations

$$
\begin{align*}
& A \circ B:=(A \ominus B) \oplus B \tag{33}\\
& A \bullet B:=(A \oplus B) \ominus B \tag{34}
\end{align*}
$$

opening and closing.
Definition 18. For any (typically small) support set B called a structuring element and any morphological operation \otimes, the operator $\varphi_{\otimes B}:\{0,1\}^{\mathbb{Z} \times \mathbb{Z}} \rightarrow\{0,1\}^{\mathbb{Z} \times \mathbb{Z}}$ such that for any (infinite binary digital image) $f: \mathbb{Z}^{2} \rightarrow\{0,1\}$ and any (pixel) $v \in \mathbb{Z}^{2}$, we have $\varphi_{\otimes B}(f)(v)=1$ if and only if $v \in f^{-1}(1) \otimes B$ is called the morphological operator wrt. \otimes and B.

Non-linear operators

Binary image

f

Erosion

$\varphi_{\ominus B}(f)$

Non-linear operators

Binary image

f

Closing

$\varphi_{\bullet B}(f)$

Non-linear operators

Definition 19. For any $n_{0}, n_{1} \in \mathbb{N}$, the set $V=\left[n_{0}\right] \times\left[n_{1}\right]$ and the pixel grid graph $G=(V, E)$, an operator $\varphi: \mathbb{N}_{0}^{V} \rightarrow \mathbb{N}_{0}^{V}$ is called a (connected) components operator if for any digital image $f: V \rightarrow \mathbb{N}_{0}$ and any pixels $v, w \in V$, we have $\varphi(f)(v)=\varphi(f)(w)$ iff there exists a $v w$-path in G along which all pixels have the color zero.

Non-linear operators

Binary image

f

Connected component labeling

$\varphi(f)$

Non-linear operators

```
size t componentsImage(
    Marray<size_t> const & image,
    Marray<size_t> & components
) {
    components.resize({image.shape(0), image.shape(1)});
    PixelGridGraph pixelGridGraph({image.shape(0), image.shape(1)});
    size_t component = 0;
    stac\overline{k}<size t> stack;
    for(size_t v = 0; v < pixelGridGraph.number0fVertices(); ++v) {
        Pixel pixel = pixelGridGraph.coordinate(v);
        if(image(pixel[0], pixel[1]) == 0
        && components(pixel[0], pixel[1]) == 0) {
            ++component;
            components(pixel[0], pixel[1]) = component;
            stack.push(v);
            while(!stack.empty()) {
                size_t const v = stack.top();
                stack.pop();
                for(auto it = pixelGridGraph.verticesFromVertexBegin(v);
                it != pixelGridGraph.verticesFromVertexEnd(v); ++it) {
                        Pixel pixel = it.coordinate();
                        if(image(pixel[0], pixel[1]) == 0
                && components(pixel[0], pixel[1]) == 0) {
                    components(pixel[0], pixel[1]) = component;
                    stack.push(*it);
                    }
                }
            }
        }
    }
    return component; // number of components
}
```

Non-linear operators

Definition 20. For any $n_{0}, n_{1} \in \mathbb{N}$, the set $V=\left[n_{0}\right] \times\left[n_{1}\right]$ and the pixel grid graph $G=(V, E)$, the distance operator $\varphi: \mathbb{N}_{0}^{V} \rightarrow \mathbb{N}_{0}^{V}$ is such that for any digital image $f: V \rightarrow \mathbb{N}_{0}$ and any pixel $v \in V$, the number $\varphi(f)(v)$ is the minimum distance in the pixel grid graph from v to a pixel w with $f(w)=1$.

Non-linear operators

Binary image

f

Distance image

$\varphi(f)$

Non-linear operators

```
size_t distanceImage(
    Marray<size_t> const & image,
    Marray<size_t> & distances
) {
    distances.resize({image.shape(0), image.shape(1)}, 0);
    GridGraph pixelGridGraph({image.shape(0), image.shape(1)});
    size_t distance = 0;
    array<stack<size_t>, 2> stacks;
    for(size t v = 0; v < pixelGridGraph.numberOfVertices(); ++v) {
        Pixel̄ pixel = pixelGridGraph.coordinates(v);
        if(image(pixel[0], pixel[1]) != 0)
            stacks[0].push(v);
    }
    ++distance;
    for(;;) {
        auto & stack = stacks[(distance - 1) % 2];
        if(stack.empty())
            return distance - 1; // maximal distance
        while(!stack.empty()) {
            size_t const v = stack.top();
            stack.pop();
            for(auto it = pixelGridGraph.verticesFromVertexBegin(v);
            it != pixelGridGraph.verticesFromVertexEnd(v) ; ++it) {
                Pixel pixel = it.coordinate();
                if(image(pixel[0], pixel[1]) == 0
                && distances(pixel[0], pixel[1]) == 0) {
                    distances(pixel[0], pixel[1]) = distance;
                    stacks[distance % 2].push(*it);
            }
            }
        }
        ++distance;
    }
34
```

Non-linear operators

For any set V of pixels and neighborhood function $N: V \rightarrow 2^{V}$, non-maximum suppression is the operator $\varphi_{\mathrm{NMS}}: \mathbb{R}^{V} \rightarrow \mathbb{R}^{V}$ such that for each digital image $f: V \rightarrow \mathbb{R}$ and all pixels $v \in V$:

$$
\varphi_{\mathrm{NMS}}(f)(v)= \begin{cases}f(v) & \text { if } f(v)=\max f(N(v)) \tag{35}\\ 0 & \text { otherwise }\end{cases}
$$

Edge and corner detection

Edge detection ${ }^{1}$

${ }^{1}$ https://en.wikipedia.org/wiki/Canny_edge_detector

Edge and corner detection
Canny's edge detection algorithm ${ }^{1}$ has four steps

1. Gradient computation from digital image $f: V \rightarrow \mathbb{R}$:

$$
\begin{array}{ll}
g=\sqrt{\partial_{0} f+\partial_{1} f} & \text { std: :hypot in } \mathrm{C}++ \\
\alpha=\operatorname{atan} 2\left(\partial_{1} f, \partial_{0} f\right) & \text { std: :atan2 in } \mathrm{C}++
\end{array}
$$

2. Directional non-maximum suppression of g :

3	2	1
0		0
1	2	3

3. Double thresholding with $\theta_{0}, \theta_{1} \in \mathbb{R}_{0}^{+}$such that $\theta_{0} \leq \theta_{1}$: A (any) pixel $v \in V$ is taken considered to be a strong edge pixel iff $\theta_{1} \leq g(v)$ and is taken to be a weak edge pixel iff $\theta_{0} \leq g(v)<\theta_{1}$.
4. Weak edge classification: A (any) pixel $v \in V$ is taken to be an edge pixel iff (i) v is a strong edge pixel, or (ii) v is a weak edge pixel and there is a strong edge pixel in the 8 -neighborhood of v.
[^0]Edge and corner detection

Corner detection ${ }^{1}$

Edge and corner detection

Definition 21. Let $n_{0}, n_{1} \in \mathbb{N}$, let $V=\left[n_{0}\right] \times\left[n_{1}\right]$, let $f: V \rightarrow \mathbb{R}$ a digital image, let $\partial_{0}, \partial_{1}$ be discrete derivative operators, and let $N: V \rightarrow \mathbb{R}^{V}$.
For each $v \in V$:

- Let $A(v)$ be the $|N(v)| \times 2$-matrix such that for every $w \in N(v)$, we have

$$
\begin{equation*}
A_{w} \cdot(v)=\left(\left(\partial_{0} f\right)(w),\left(\partial_{1} f\right)(w)\right) . \tag{38}
\end{equation*}
$$

- Let $k_{v}: N(v) \rightarrow \mathbb{R}_{0}^{+}$such that $\sum_{w \in N(v)} k_{v}(w)=1$.
- Define the structure tensor of f at v wrt. k_{v} as the 2×2-matrix

$$
\begin{align*}
S_{k}(f)(v) & :=\sum_{w \in N(v)} k_{v}(w) A_{w}^{T} \cdot(v) A_{w} \cdot(v) \tag{39}\\
& =\sum_{w \in N(v)} k_{v}(w)\left(\begin{array}{cc}
\left(\partial_{0} f\right)^{2}(w) & \left(\partial_{0} f\right)(w)\left(\partial_{1} f\right)(w) \\
\left(\partial_{0} f\right)(w)\left(\partial_{1} f\right)(w) & \left(\partial_{1} f\right)^{2}(w)
\end{array}\right) \tag{40}
\end{align*}
$$

Edge and corner detection
Remark 2. Fix a direction by choosing $r \in \mathbb{R}^{2}$ with $|r|=1$ and consider the k_{v}-weighted squared projection of the gradient of the digital image:

$$
\begin{align*}
P_{r}(v) & =\sum_{w \in N(v)} k_{v}(w)\left|A_{w \cdot}(v) r\right|^{2} \tag{41}\\
& =\sum_{w \in N(v)} k_{v}(w) r^{T} A_{w \cdot}^{T} \cdot(v) A_{w \cdot}(v) r \tag{42}\\
& =r^{T}\left(\sum_{w \in N(v)} k_{v}(w) A_{w}^{T} \cdot(v) A_{w \cdot} \cdot(v)\right) r \tag{43}\\
& =r^{T} S(v) r \tag{44}
\end{align*}
$$

With the spectral decomposition

$$
\begin{equation*}
S(v)=\sigma_{1}(v) s_{1}(v) s_{1}^{T}(v)+\sigma_{2}(v) s_{2}(v) s_{2}^{T}(v) \tag{45}
\end{equation*}
$$

we obtain

$$
\begin{align*}
P_{r}(v) & =r^{T}\left(\sigma_{1}(v) s_{1}(v) s_{1}^{T}(v)+\sigma_{2}(v) s_{2}(v) s_{2}^{T}(v)\right) r \tag{46}\\
& =\sigma_{1}(v)\left|s_{1}(v) \cdot r\right|^{2}+\sigma_{2}(v)\left|s_{2}(v) \cdot r\right|^{2} \tag{47}
\end{align*}
$$

Edge and corner detection

Remark 3.

- If $\sigma_{1}=\sigma_{2}=0$, we have $P_{r}(v)=0$ for any direction r. I.e. the image is constant.
- If $\sigma_{1}>0$ and $\sigma_{2}=0$, we can choose a direction r such that $P_{r}(v)=0$. I.e. the gradient of the image is non-zero and constant.
- If $\sigma_{1}, \sigma_{2}>0$, we cannot choose r such that $P_{r}(v)=0$. I.e. the gradient of the image varies across $N(v)$.

Edge and corner detection

Definition 22. Let V the set of pixels of a digital image, let $S: V \rightarrow \mathbb{R}^{2 \times 2}$ such that for any $v \in V, S(v)$ is the structure tensor of the image at pixel v, and let $\sigma_{1}(v) \geq \sigma_{2}(v) \geq 0$ be the eigenvalues of $S(v)$. Harris' corner detector ${ }^{2}$ wrt. a neighborhood function $N: V \rightarrow 2^{V}$ refers to the function $\varphi_{\mathrm{NMS}} \circ \sigma_{2}$.

[^1]
[^0]: ${ }^{1}$ J. Canny. A Computational Approach To Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6):679-698, 1986

[^1]: ${ }^{2}$ C. Harris and M . Stephens. A Combined Corner and Edge Detector. Alvey Vision Conference. Vol. 15. 1988

