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Pixel classification

Digital image1 f : V → C Classification y : V → {0, 1}

1By courtesy of Stephan Grill and his lab at the MPI of Molecular Cell Biology and Genetics.
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Pixel classification

Suppose we can construct a function c : V → R wrt. a ditial image f : V → C
in such a way that for any pixel v ∈ V :

▶ cv < 0 if we consider yv = 1 to be the right decision

▶ cv > 0 if we consider yv = 0 to be the right decision.

Definition 1. For any set V of pixels and any function c : V → R, the instance
of the trivial pixel classification problem wrt. c has the form

min
y∈{0,1}V

∑
v∈V

cv yv (1)
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Pixel classification

In case the decision yv for a pixel v
depends on the color f(v) of that pixel
only, we can in principle

▶ construct a function ξ : C → R
▶ define cv = ξ(f(v)) for any

v ∈ V .

In practice, this task is supported by
carefully designed GUIs.

In case the decision yv for a pixel v
depends on the colors of all pixels in a
neighborhood N(v) ⊆ V around v, we
can in principle

▶ construct, for any pixel v, a
function ξv : C

N(v) → R that
assigns a real number ξv(f

′) to
any coloring f ′ : N(v) → C of
the neighborhood N(v) of v

▶ define cv = ξ(fN(v)) for any
v ∈ V .

In practice, this task is typically ad-
dressed by machine learning.
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Pixel classification

Random variables:

▶ For any sample s ∈ S, let Xs be a random variable whose value is a vector
xs ∈ RV , the attribute vector of s

▶ For any sample s ∈ S, let Ys be a random variable whose value is a binary
number ys ∈ {0, 1}, the label of s

▶ For any v ∈ V , let Θv be a random variable whose value is a real number
θv ∈ R, a parameter of the linear function we seek to learn

Probabilistic model:

P (X,Y,Θ) =
∏
s∈S

(P (Ys | Xs,Θ)P (Xs))
∏
v∈V

P (Θv) (2)
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Pixel classification

▶ Logistic distribution

∀s ∈ S : pYs|Xs,Θ(1) =
1

1 + 2−fθ(xs)
(3)
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Pixel classification

▶ Normal distribution with σ ∈ R+:

∀v ∈ V : pΘv (θv) =
1

σ
√
2π

e−θ2v/2σ
2

(4)
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Pixel classification

The learning problem consists in maximizing the probability

P (Θ | X,Y ) =
P (X,Y,Θ)

P (X,Y )

=
P (Y | X,Θ)P (X)P (Θ)

P (X,Y )

∝ P (Y | X,Θ)P (Θ)

=
∏
s∈S

P (Ys | Xs,Θ)
∏
v∈V

P (Θv)

The inference problem consists in maximizing the probability

P (Y | X,Θ) =
∏
s∈S

P (Ys | Xs,Θ)
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Pixel classification

Lemma. Estimating maximally probable parameters θ, given attributes x and
labels y, i.e.,

argmax
θ∈Rm

pΘ|X,Y (θ, x, y)

is equivalent ot the optimization problem

min
θ∈Θ

λR(θ) +
1

|S|
∑
s∈S

L(fθ(xs), ys) (5)

with L, R and λ such that

∀r ∈ R ∀ŷ ∈ {0, 1} : L(r, ŷ) = −ŷr + log (1 + 2r) (6)

∀θ ∈ Θ: R(θ) = ∥θ∥22 (7)

λ =
log e

2σ2
. (8)

It is called the l2-regularized logistic regression problem with respect to x, y
and σ.
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Pixel classification

Proof. Firstly,

argmax
θ∈Rm

pΘ|X,Y (θ, x, y)

= argmax
θ∈Rm

∏
s∈S

pYs|Xs,Θ(ys, xs, θ)
∏
v∈V

pΘv (θv)

= argmax
θ∈Rm

∑
s∈S

log pYs|Xs,Θ(ys, xs, θ) +
∑
v∈V

log pΘv (θv) (9)

Secondly,

log pYs|Xs,Θ(ys, xs, θ)

= ys log pYs|Xs,Θ(1, xs, θ) + (1− ys) log pYs|Xs,Θ(0, xs, θ)

= ys log
pYs|Xs,Θ(1, xs, θ)

pYs|Xs,Θ(0, xs, θ)
+ log pYs|Xs,Θ(0, xs, θ) (10)

Thus, with (3) and (4):

argmin
θ∈Rm

∑
s∈S

(
−ys⟨θ, xs⟩+ log

(
1 + 2⟨θ,xs⟩

))
+

log e

2σ2
∥θ∥22 (11)



11/13

Pixel classification

Lemma 1. The objective function

φ(θ) = λR(θ) +
1

|S|
∑
s∈S

L(fθ(xs), ys) (12)

of the l2-regularized logistic regression problem is convex.

The problem can be solved, e.g., by the steepest descent algorithm with a
tolerance parameter ϵ ∈ R+

0 :

θ := 0
repeat

d := ∇φ(θ)
η := argminη′∈R φ(θ − η′d) (line search)
θ := θ − ηd
if ∥d∥ < ϵ

return θ
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Pixel classification

Lemma: Estimating maximally probable labels y, given attributes x′ and
parameters θ, i.e.,

argmax
y∈{0,1}S

pY |X,Θ(y, x
′, θ) (13)

is equivalent to the inference problem

min
y′∈{0,1}S

∑
s∈S

L(fθ(xs), y
′
s) . (14)

It has the solution

∀s ∈ S′ : ys =

{
1 if fθ(x

′
s) > 0

0 otherwise
. (15)
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Pixel classification

Proof. Firstly,

argmax
y∈{0,1}S′

pY |X,Θ(y, x
′, θ)

= argmax
y∈{0,1}S′

∏
s∈S′

pYs|Xs,Θ(ys, x
′
s, θ)

= argmax
y∈{0,1}S′

∑
s∈S′

log pYs|Xs,Θ(ys, x
′
s, θ)

= argmax
y∈{0,1}S′

∑
s∈S′

(
ys log

pYs|Xs,Θ(1, x
′
s, θ)

pYs|Xs,Θ(0, x
′
s, θ)

+ log pYs|Xs,Θ(0, x
′
s, θ)

)
= argmin

y∈{0,1}S′

∑
s∈S′

(
−ysfθ(x

′
s) + log

(
1 + 2fθ(x

′
s)
))

= argmin
y∈{0,1}S′

∑
s∈S′

L(fθ(x
′
s), ys) .

Secondly,

min
y∈{0,1}S′

∑
s∈S′

(
−ysfθ(x

′
s) + log

(
1 + 2fθ(x

′
s)
))

=
∑
s∈S′

max
ys∈{0,1}

ysfθ(x
′
s) .


