Computer Vision I

Bjoern Andres, Holger Heidrich, Jannik Presberger

Machine Learning for Computer Vision TU Dresden

Winter Term 2023/2024

- In practice, solutions to the trivial pixel classification problem can be improved by exploiting prior knowledge about feasible combinations of decisions.
- Next, we consider prior knowledge saying that decisions at neighboring pixels v, w ∈ V are more likely to be equal (yv = vw) than unequal (yv ≠ yw).

Definition 1. For any pixel grid graph (V, E), any $c: V \to \mathbb{R}$ and any $c': E \to \mathbb{R}_0^+$, the instance of the **smooth pixel classification problem** wrt. c and c' has the form

$$\min_{y \in \{0,1\}^V} \underbrace{\sum_{v \in V} c_v \, y_v + \sum_{\{v,w\} \in E} c'_{\{v,w\}} \, |y_v - y_w|}_{\varphi(y)} \tag{1}$$

A naïve algorithm for this problem is local search with a transformation $T_v \colon \{0,1\}^V \to \{0,1\}^V$ that changes the decision for a single pixel, i.e., for any $y \colon V \to \{0,1\}$ and any $v, w \in V$:

$$T_v(y)(w) = \begin{cases} 1 - y_w & \text{if } w = v \\ y_w & \text{otherwise} \end{cases}$$

.

$$\begin{array}{lllllll} \text{Initially, } y \colon V \to \{0,1\} \text{ and } W = V\\ \text{while } W \neq \emptyset\\ W' := \emptyset\\ \text{for each } v \in W\\ \text{if } \varphi(T_v(y)) - \varphi(y) < 0\\ y := T_v(y)\\ W' := W' \cup \{w \in V \,|\, \{v,w\} \in E\}\\ W := W' \end{array}$$

- So far, we have studied a local search algorithm for the smooth pixel classification problem.
- On the one hand, this algorithm is easy to implement and has straight-forward generalizations, e.g., to the case of more than two classes.
- On the other hand, it does not necessarily solve smooth pixel classification with two classes to optimality.
- Next, we will reduce the smooth pixel classification problem with two classes to the well-known minimum st-cut problem that can be solved exactly and efficiently.
- The notes are organized as follows
 - Definition of the minimum *st*-cut problem
 - Submodularity
 - Reduction of the smooth pixel classification problem

Definition 2. A 5-tuple $N = (V, E, s, t, \gamma)$ is called a **network** iff (V, E) is a directed graph and $s \in V$ and $t \in V$ and $s \neq t$ and $\gamma : E \to \mathbb{R}_0^+$.

The nodes s and t are called the **source** and the **sink** of N, respectively.

For any edge $e \in E$, γ_e is called the **capacity** of e in N.

Definition 3. Let (V, E) be a directed graph. Let $s \in V$ and $t \in V$ and $s \neq t$.

- $X \subseteq V$ is called an *st*-cutset of (V, E) iff $s \in X$ and $t \notin X$.
- ▶ $Y \subseteq E$ is called an *st*-cut of (V, E) iff there exists an *st*-cutset X such that $Y = \{vw \in E \mid v \in X \land w \notin X\}.$

Definition 4. The instance of the minimum $st\mathcal{-cut}$ problem wrt. a network $N=(V,E,s,t,\gamma)$ is to

$$\min_{x \in \{0,1\}^V} \quad \sum_{vw \in E} (1 - x_v) \, x_w \, \gamma_{vw} \tag{2}$$

subject to
$$x_s = 0$$
 (3)

$$x_t = 1 \tag{4}$$

Definition 5. A lattice (S, \preceq) is a set S, equipped with a partial order \preceq , such that any two elements of S have an infimum and a supremum wrt. \preceq .

Example. $(\{0,1\}^2, \preceq)$ with $\preceq := \{(s,t) \in S \times S \mid s_1 \le t_1 \land s_2 \le t_2\}.$

For any $s, t \in \{0, 1\}^2$,

$$\sup(s,t) = (\max\{s_1,t_1\}, \max\{s_2,t_2\})$$

$$\inf(s,t) = (\min\{s_1,t_1\}, \min\{s_2,t_2\})$$

Definition 6. A function $f:S\to\mathbb{R}$ is called submodular wrt. a lattice (S,\preceq) iff

$$\forall s, t \in S \qquad f(\inf(s, t)) + f(\sup(s, t)) \le f(s) + f(t) \quad . \tag{5}$$

Lemma 1. The sum of two submodular functions is submodular.

Lemma 2. For any $f: \{0,1\}^2 \to \mathbb{R}$, the following statements are equivalent.

- 1. f is is submodular wrt. the the lattice $(\{0,1\}^2,\preceq)$
- 2. $f(0,0) + f(1,1) \le f(1,0) + f(0,1)$
- 3. The unique form

 $c_{\emptyset} + c_{\{1\}}x_1 + c_{\{2\}}x_2 + c_{\{1,2\}}x_1x_2$

of f is such that $c_{\{1,2\}} \leq 0$.

Proof.

▶ $f(0,0) + f(1,1) \le f(1,0) + f(0,1)$ is the only condition in

 $\forall s, t \in S \qquad f(\inf(s, t)) + f(\sup(s, t)) \le f(s) + f(t)$

which is not generally true. Thus, (1.) is equivalent to (2.).

► We have

$$\begin{split} f(0,0) &= c_{\emptyset} \\ f(1,0) &= c_{\emptyset} + c_{\{1\}} \\ f(0,1) &= c_{\emptyset} + c_{\{2\}} \\ f(1,1) &= c_{\emptyset} + c_{\{1\}} + c_{\{2\}} + c_{\{1,2\}} . \end{split}$$

Therefore,

$$c_{\{1,2\}} = f(1,1) - f(1,0) - f(0,1) + f(0,0)$$

and thus, (2.) is equivalent to (3.).

Lemma 3. For every $f: \{0,1\}^2 \to \mathbb{R}$, there exist unique $a_0 \in \mathbb{R}$ and $a_1, a_{\bar{1}}, a_2, a_{\bar{2}}, a_{12}, a_{\bar{1}2} \in \mathbb{R}^+_0$ such that

$$a_1 a_{\bar{1}} = a_2 a_{\bar{2}} = a_{12} a_{\bar{1}2} = 0 \tag{6}$$

and

$$\forall x \in \{0,1\}^2 \quad f(x) = a_0 + a_1 x_1 + a_{\bar{1}} (1-x_1) + a_2 x_2 + a_{\bar{2}} (1-x_2) + a_{12} x_1 x_2 + a_{\bar{12}} (1-x_1) x_2 .$$
 (7)

Proof.

► Comparison of (7) with the unique form

 $c_{\emptyset} + c_{\{1\}}x_1 + c_{\{2\}}x_2 + c_{\{1,2\}}x_1x_2$

yields

$$a_{0} + a_{\bar{1}} + a_{\bar{2}} = c_{\emptyset}$$

$$a_{1} - a_{\bar{1}} = c_{\{1\}}$$

$$a_{2} - a_{\bar{2}} + a_{\bar{1}2} = c_{\{2\}}$$

$$a_{12} - a_{\bar{1}2} = c_{\{1,2\}}$$
(8)

• By these equations (from bottom to top), (6) and c define a uniquely.

Lemma 4. For every submodular $f: \{0,1\}^2 \to \mathbb{R}$ and its unique coefficient $a_0 \in \mathbb{R}$ from Lemma 3,

$$\min_{x \in \{0,1\}^2} f_x - a_0 \tag{9}$$

is equal to the weight of a **minimum** *st*-**cut** in the graph below whose edge weights are the (unique, non-negative) coefficients from Lemma 3.

Moreover, f is minimal at $\hat{x} \in \{0,1\}^2$ iff $\{j \in \{1,2\} \mid \hat{x}_j = 0\}$ is a minimum *st*-cutset of the above graph.

Proof.

- Submodularity of f implies $a_{12} = 0$ in (8), by Lemma 2 and (6).
- ► Comparison of the four possible minima of *f*,

$$f(0,0) = a_0 + a_{\bar{1}} + a_{\bar{2}}$$

$$f(1,0) = a_0 + a_1 + a_{\bar{2}}$$

$$f(0,1) = a_0 + a_{\bar{1}} + a_2 + a_{\bar{1}2}$$

$$f(1,1) = a_0 + a_1 + a_2 + a_{12}$$

with the four possible minimum cuts below proves the Lemma.

Definition 7. For any smooth pixel classification problem

$$\min_{y \in \{0,1\}^V} \quad \underbrace{\sum_{v \in V} c_v \, y_v + \sum_{\{v,w\} \in E} c'_{\{v,w\}} \, |y_v - y_w|}_{\varphi(y)} \tag{10}$$

the induced minimum st-cut problem is defined by the network (V',E',s,t,γ) such that $V'=V\cup\{s,t\}$,

$$E' = \{ (s,v) \in V'^2 \mid c_v > 0 \} \cup \{ (v,t) \in V'^2 \mid c_v < 0 \}$$
$$\cup \{ (v,w) \in V'^2 \mid \{v,w\} \in E \}$$
(11)

and $\gamma\colon E'\to \mathbb{R}^+_0$ such that

$$\forall (s,v) \in E': \quad \gamma_{(s,v)} = c_v \tag{12}$$

$$\forall (v,t) \in E' : \quad \gamma_{(v,t)} = -c_v \tag{13}$$

$$\forall \{v, w\} \in E: \quad \gamma_{(v,w)} = \gamma_{(w,v)} = c'_{\{v,w\}} \quad .$$
(14)

Lemma 5. For any smooth pixel classification problem wrt. a pixel grid graph G = (V, E) and the induced minimum *st*-cut problem with the network $(V', E', s, t, \gamma), \ \hat{y} : V \to \{0, 1\}$ is an optimal pixel classification iff $\{v \in V \mid \hat{y}_v = 0\}$ is an optimal *st*-cutset.

Proof (sketch). The function φ is submodular, by Lemma 1 and c' > 0. The statement holds by Lemma 3 and the fact that for all $y \in \{0, 1\}^V$:

$$\varphi(y) = \sum_{v \in V} c_v y_v + \sum_{\{v,w\} \in E} c'_{\{v,w\}} \left(y_v (1 - y_w) + (1 - y_v) y_w \right) \quad .$$