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Pixel classification

▶ In practice, solutions to the trivial pixel classification problem can be
improved by exploiting prior knowledge about feasible combinations of
decisions.

▶ Next, we consider prior knowledge saying that decisions at neighboring
pixels v, w ∈ V are more likely to be equal (yv = vw) than unequal
(yv ̸= yw).
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Pixel classification

Definition 1. For any pixel grid graph (V,E), any c : V → R and any
c′ : E → R+

0 , the instance of the smooth pixel classification problem wrt. c
and c′ has the form

min
y∈{0,1}V

∑
v∈V

cv yv +
∑

{v,w}∈E

c′{v,w} |yv − yw|︸ ︷︷ ︸
φ(y)

(1)
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Pixel classification

A näıve algorithm for this problem is local search with a transformation
Tv : {0, 1}V → {0, 1}V that changes the decision for a single pixel, i.e., for any
y : V → {0, 1} and any v, w ∈ V :

Tv(y)(w) =

{
1− yw if w = v

yw otherwise
.

Initially, y : V → {0, 1} and W = V
while W ̸= ∅

W ′ := ∅
for each v ∈ W

if φ(Tv(y))− φ(y) < 0
y := Tv(y)
W ′ := W ′ ∪ {w ∈ V | {v, w} ∈ E}

W := W ′
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Pixel classification

▶ So far, we have studied a local search algorithm for the smooth pixel
classification problem.

▶ On the one hand, this algorithm is easy to implement and has
straight-forward generalizations, e.g., to the case of more than two classes.

▶ On the other hand, it does not necessarily solve smooth pixel classification
with two classes to optimality.

▶ Next, we will reduce the smooth pixel classification problem with two
classes to the well-known minimum st-cut problem that can be solved
exactly and efficiently.

▶ The notes are organized as follows
▶ Definition of the minimum st-cut problem
▶ Submodularity
▶ Reduction of the smooth pixel classification problem
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Definition 2. A 5-tuple N = (V,E, s, t, γ) is called a network iff (V,E) is a
directed graph and s ∈ V and t ∈ V and s ̸= t and γ : E → R+

0 .

The nodes s and t are called the source and the sink of N , respectively.

For any edge e ∈ E, γe is called the capacity of e in N .
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Definition 3. Let (V,E) be a directed graph. Let s ∈ V and t ∈ V and s ̸= t.

▶ X ⊆ V is called an st-cutset of (V,E) iff s ∈ X and t /∈ X.

▶ Y ⊆ E is called an st-cut of (V,E) iff there exists an st-cutset X such
that Y = {vw ∈ E | v ∈ X ∧ w /∈ X}.
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Definition 4. The instance of the minimum st-cut problem wrt. a network
N = (V,E, s, t, γ) is to

min
x∈{0,1}V

∑
vw∈E

(1− xv)xw γvw (2)

subject to xs = 0 (3)

xt = 1 (4)
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Definition 5. A lattice (S,⪯) is a set S, equipped with a partial order ⪯, such
that any two elements of S have an infimum and a supremum wrt. ⪯.

Example. ({0, 1}2,⪯) with ⪯ := {(s, t) ∈ S × S | s1 ≤ t1 ∧ s2 ≤ t2}.

(0, 0)

(1, 0) (0, 1)

(1, 1)

For any s, t ∈ {0, 1}2,

sup(s, t) = (max{s1, t1},max{s2, t2})
inf(s, t) = (min{s1, t1},min{s2, t2})
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Definition 6. A function f : S → R is called submodular wrt. a lattice (S,⪯)
iff

∀s, t ∈ S f(inf(s, t)) + f(sup(s, t)) ≤ f(s) + f(t) . (5)

Lemma 1. The sum of two submodular functions is submodular.
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Lemma 2. For any f : {0, 1}2 → R, the following statements are equivalent.

1. f is is submodular wrt. the the lattice ({0, 1}2,⪯)

2. f(0, 0) + f(1, 1) ≤ f(1, 0) + f(0, 1)

3. The unique form

c∅ + c{1}x1 + c{2}x2 + c{1,2}x1x2

of f is such that c{1,2} ≤ 0.
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Proof.

▶ f(0, 0) + f(1, 1) ≤ f(1, 0) + f(0, 1) is the only condition in

∀s, t ∈ S f(inf(s, t)) + f(sup(s, t)) ≤ f(s) + f(t)

which is not generally true. Thus, (1.) is equivalent to (2.).

▶ We have

f(0, 0) = c∅

f(1, 0) = c∅ + c{1}

f(0, 1) = c∅ + c{2}

f(1, 1) = c∅ + c{1} + c{2} + c{1,2} .

Therefore,

c{1,2} = f(1, 1)− f(1, 0)− f(0, 1) + f(0, 0)

and thus, (2.) is equivalent to (3.).
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Lemma 3. For every f : {0, 1}2 → R, there exist unique a0 ∈ R and
a1, a1̄, a2, a2̄, a12, a1̄2 ∈ R+

0 such that

a1a1̄ = a2a2̄ = a12a1̄2 = 0 (6)

and

∀x ∈ {0, 1}2 f(x) = a0

+ a1x1 + a1̄(1− x1)

+ a2x2 + a2̄(1− x2)

+ a12x1x2 + a1̄2(1− x1)x2 . (7)
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Proof.

▶ Comparison of (7) with the unique form

c∅ + c{1}x1 + c{2}x2 + c{1,2}x1x2

yields

a0 + a1̄ + a2̄ = c∅

a1 − a1̄ = c{1}

a2 − a2̄ + a1̄2 = c{2}

a12 − a1̄2 = c{1,2} (8)

▶ By these equations (from bottom to top), (6) and c define a uniquely.
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Lemma 4. For every submodular f : {0, 1}2 → R and its unique coefficient
a0 ∈ R from Lemma 3,

min
x∈{0,1}2

fx − a0 (9)

is equal to the weight of a minimum st-cut in the graph below whose edge
weights are the (unique, non-negative) coefficients from Lemma 3.
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Moreover, f is minimal at x̂ ∈ {0, 1}2 iff {j ∈ {1, 2} | x̂j = 0} is a minimum
st-cutset of the above graph.
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Proof.

▶ Submodularity of f implies a12 = 0 in (8), by Lemma 2 and (6).

▶ Comparison of the four possible minima of f ,

f(0, 0) = a0 + a1̄ + a2̄

f(1, 0) = a0 + a1 + a2̄

f(0, 1) = a0 + a1̄ + a2 + a1̄2

f(1, 1) = a0 + a1 + a2 + a12 ,

with the four possible minimum cuts below proves the Lemma.
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Definition 7. For any smooth pixel classification problem

min
y∈{0,1}V

∑
v∈V

cv yv +
∑

{v,w}∈E

c′{v,w} |yv − yw|︸ ︷︷ ︸
φ(y)

(10)

the induced minimum st-cut problem is defined by the network
(V ′, E′, s, t, γ) such that V ′ = V ∪ {s, t},

E′ ={(s, v) ∈ V ′2 | cv > 0} ∪ {(v, t) ∈ V ′2 | cv < 0}

∪ {(v, w) ∈ V ′2 | {v, w} ∈ E} (11)

and γ : E′ → R+
0 such that

∀(s, v) ∈ E′ : γ(s,v) = cv (12)

∀(v, t) ∈ E′ : γ(v,t) = −cv (13)

∀{v, w} ∈ E : γ(v,w) = γ(w,v) = c′{v,w} . (14)
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Lemma 5. For any smooth pixel classification problem wrt. a pixel grid graph
G = (V,E) and the induced minimum st-cut problem with the network
(V ′, E′, s, t, γ), ŷ : V → {0, 1} is an optimal pixel classification iff
{v ∈ V | ŷv = 0} is an optimal st-cutset.

Proof (sketch). The function φ is submodular, by Lemma 1 and c′ > 0.

The statement holds by Lemma 3 and the fact that for all y ∈ {0, 1}V :

φ(y) =
∑
v∈V

cv yv +
∑

{v,w}∈E

c′{v,w} (yv(1− yw) + (1− yv)yw) .


