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Convolutional networks

Notation. Let G = (V,E) a digraph.

▶ For any v ∈ V , let

Pv = {u ∈ V | (u, v) ∈ E} the set of parents of v (1)

Cv = {w ∈ V | (v, w) ∈ E} the set of children of v . (2)

▶ For any u, v ∈ V , let P(u, v) denote the set of all uv-paths. (Any path is
a subgraph. For any node u, the uu-path ({u}, ∅) exists.)

Let G be acyclic.

▶ For any v ∈ V , let

Av = {u ∈ V | P(u, v) ̸= ∅} \ {v} the set of ancestors of v (3)

Dv = {w ∈ V | P(v, w) ̸= ∅} \ {v} the set of descendants of v . (4)
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Convolutional networks

Definition. A tuple (V,D,D′, E,Θ, {gvθ : RPv → R}v∈(D∪D′)\V,θ∈Θ) is called
a compute graph, iff the following conditions hold:

▶ G = (V ∪D ∪D′, E) is an acyclic digraph

▶ ∀v ∈ V : Pv = ∅
▶ ∀v ∈ D′ : Cv = ∅
▶ ∀v ∈ D : Pv ̸= ∅ and Cv ̸= ∅

Definition. For any compute graph
(V,D,D′, E,Θ, {gvθ : RPv → R}v∈(D∪D′)\V,θ∈Θ), any v ∈ V ∪D ∪D′ and
any θ ∈ Θ, let αvθ : RV → R such that for all x̂ ∈ RV :

αvθ(x̂) =

{
x̂v if v ∈ V

gvθ(αPvθ(x̂)) otherwise
. (5)

We call αvθ(x̂) the activation of v for input x̂ and parameters θ. For any

θ ∈ Θ let fθ : RV → RD′
such that fθ = αD′θ. We call fθ(x̂) the output of

the compute graph for input x̂ and parameters θ.
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Convolutional networks

Example. Consider the compute graph below with V = {v0, v1, v2},
D = {v3} and D′ = {v4}.

v0

v1

v2

v3

v4

Moreover, consider Θ = {θ0, θ1} and

▶ gv3θ : R
{v0,v1} → R such that gv3θ(x) = xv0 + θ0xv1

▶ gv4θ : R
{v2,v3} → R such that gv4θ(x) = xv2 + xθ1

v3

This defines the function fθ(x) = xv2 + (xv0 + θ0xv1)
θ1 .
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Convolutional networks

In the following:

▶ We assume Θ = RJ for some set J .

▶ We consider compute graphs with |D′| = 1, i.e. fθ(x̂) ∈ R for every
x̂ ∈ RV .
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Convolutional networks

Learning Problem

The l2-regularized non-linear logistic regression problem with respect to
labeled data T = (S,RV , x, y) and σ ∈ R+ is to solve

argmin
θ∈RJ

1

|S|
∑
s∈S

(
−ysfθ(xs) + log

(
1 + 2fθ(x)

))
+

log e

2σ2
∥θ∥2 . (6)

Remark.

▶ The optimization problem (6) is analogous to linear logistic regression.

▶ The optimization problem (6) can be non-convex for non-linear fθ.

▶ A local minimum θ̂ ∈ RJ can be found by means of a steepest descent
algorithm. We describe two techniques, forward propagation and
backward propagation, for computing ∇θfθ.
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Convolutional networks

Lemma. Let j ∈ J . For any v ∈ V : ∂αvθ
∂θj

= 0. For any v ∈ (D ∪D′) \ V :

∂αvθ

∂θj
=

∑
u∈(Av∪{v})\V

∂guθ
∂θj

∆uv (7)

with

∆uv :=
∑

(V ′,E′)∈P(u,v)

∏
(u′,v′)∈E′

∂gv′θ

∂αu′θ
. (8)

Remark. For any node u: ∆uu = 1. For any u, v with P(u, v) = ∅: ∆uv = 0.

Proof (idea).

∂αvθ

∂θj
=

∂gvθ
∂θj

+
∑
u∈Pv

∂gvθ
∂αuθ

∂αuθ

∂θj
(9)

=
∂gvθ
∂θj

+
∑
u∈Pv

∂gvθ
∂αuθ

∂guθ
∂θj

+
∑
u∈Pv

∑
u′∈Pu

∂gvθ
∂αuθ

∂guθ
∂αu′θ

∂αu′θ

∂θj

= repeated application (9)

=
∑

u∈(Av∪{v})\V

∂guθ
∂θj

∑
(V ′,E′)∈P(u,v)

∏
(u′,v′)∈E′

∂gv′θ

∂αu′θ
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Convolutional networks

Lemma (backward propagation). For all nodes u ̸= w such that P(u,w) ̸= ∅:

∆uw =
∑
v∈Cu

∂gvθ
∂αuθ

∆vw (10)

Proof.

∆uw =
∑

(V ′,E′)∈P(u,w)

∏
(u′,v′)∈E′

∂gv′θ

∂αu′θ

=
∑
v∈Cu

∑
(V ′′,E′′)∈P(v,w)

∏
(u′,v′)∈E′′∪{(u,v)}

∂gv′θ

∂αu′θ

=
∑
v∈Cu

∂gvθ
∂αuθ

∑
(V ′′,E′′)∈P(v,w)

∏
(u′,v′)∈E′′

∂gv′θ

∂αu′θ

=
∑
v∈Cu

∂gvθ
∂αuθ

∆vw



9/9

Convolutional networks

The backward propagation algorithm computes ∆uw for one node w and all
nodes u. It is defined wrt. an arbitrary partial order <C of the nodes such that

∀u ∈ V ∪D ∀v ∈ Cu : v <C u . (11)

Input:
Compute graph (V,D,D′, E,Θ, {gvθ : RPv → R}v∈(D∪D′)\V,θ∈Θ)
Node w ∈ V ∪D ∪D′

for u ordered by <C (11)
if u = w

∆uw := 1
else if P(u,w) = ∅

∆uw := 0
else

∆uw :=
∑

v∈Cu

∂gvθ
∂αuθ

∆vw (10)


