
1/6

Computer Vision I

Bjoern Andres, Holger Heidrich, Jannik Presberger

Machine Learning for Computer Vision
TU Dresden

Winter Term 2023/2024

https://mlcv.inf.tu-dresden.de/courses/23-winter/cv1/index.html

2/6

Image decomposition

▶ So far, we have studied pixel classification, a problem whose feasible
solutions define decisions at the pixels of an image

▶ Next, we will study image decomposition, a problem whose feasible
solutions decide whether pairs of pixels are assigned to the same or
distinct components of the image

▶ Image decomposition has applications where components of the image are
indistinguishable by appearance (see next slide)

3/6

7→

Volume Image (32 nm/voxel) Decomposition
(Denk and Horstmann, 2004) (Andres et al., 2012)

4/6

4/6

4/6

4/6

5/6

Decomposition of a graph G = (V,E)

▶ A mathematical abstraction of a decomposition of an image is a
decomposition of the pixel grid graph.

▶ A decomposition of a graph is a partition of the node set into connected
subsets (one example is depicted above in gray).

5/6

Decomposition of a graph G = (V,E)

▶ A decomposition of a graph is characterized by the set of edges that
straddle distinct components (depicted above as dotted lines)

▶ Those subsets of edges are called multicuts of the graph

5/6

Multicut of a graph G = (V,E)

▶ A decomposition of a graph is characterized by the set of edges that
straddle distinct components (depicted above as dotted lines)

▶ Those subsets of edges are called multicuts of the graph

5/6

Multicut of a graph G = (V,E)

▶ The defining property of multicuts is that no cycle in the graph intersects
with the multicut in precisely one edge

5/6

Multicut of a graph G = (V,E)

▶ The defining property of multicuts is that no cycle in the graph intersects
with the multicut in precisely one edge

5/6

Multicut of a graph G = (V,E)

▶ The defining property of multicuts is that no cycle in the graph intersects
with the multicut in precisely one edge

5/6

Multicut of a graph G = (V,E)

multicuts(G) := {M ⊆ E | ∀C ∈ cycles(G) : |M ∩ C| ̸= 1}

5/6

Multicut of a graph G = (V,E)

5/6

Multicut of a graph G = (V,E)

▶ The characteristic function y : E → {0, 1} of a multicut y−1(1) can be
used to encode the decomposition induced by the multicut in an
|E|-dimensional 01-vector

▶ For any e ∈ E, ye = 1 indicates that an edge is cut, straddling distinct
components

5/6

Multicut of a graph G = (V,E)

▶ The set of the characteristic functions of all multicuts of G:

YG :=

y : E → {0, 1}

∣∣∣∣∣∣ ∀C ∈ cycles(G) ∀e ∈ C : ye ≤
∑

f∈C\{e}

yf

5/6

Graph G = (V,E)

▶ An instance of the image decomposition problem is given by a graph
G = (V,E) and, for every edge e = {v, w} ∈ E, a (positive or negative)
cost ce ∈ R that is payed iff the incident pixels v and w are put in distinct
components

▶ Such costs are often estimated from examples using machine learning
technqiues

5/6

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2

-1

2

2

-1

2

2

-1

2

2

2

2

2

-1

2

Graph G = (V,E). Edge costs c : E → R

▶ An instance of the image decomposition problem is given by a graph
G = (V,E) and, for every edge e = {v, w} ∈ E, a (positive or negative)
cost ce ∈ R that is payed iff the incident pixels v and w are put in distinct
components

▶ Such costs are often estimated from examples using machine learning
technqiues

5/6

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2

-1

2

2

-1

2

2

-1

2

2

2

2

2

-1

2

Graph G = (V,E). Edge costs c : E → R

▶ Image decomposition problem:

min
y∈YG

∑
e∈E

ce ye

▶ The optimal solution is shown in the next slide

5/6

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2

-1

2

2

-1

2

2

-1

2

2

2

2

2

-1

2

Graph G = (V,E). Edge costs c : E → R

6/6

▶ One technique for finding feasible solutions to an image decomposition
problem is local search.

▶ Starting from the finest decomposition into singleton components
(depicted above), we greedily join neighboring components as long as this
improves the cost (see next slide).

6/6

▶ Once no joining of neighboring components further reduces the cost, we
consider all pairs of neighboring components

(depicted in green) and all
nodes at the shared boundary (depicted in black) and all possibilities of
moving nodes from one component to the other.

▶ The procedure is iterated until no such transformation further reduces the
cost

6/6

▶ Once no joining of neighboring components further reduces the cost, we
consider all pairs of neighboring components (depicted in green)

and all
nodes at the shared boundary (depicted in black) and all possibilities of
moving nodes from one component to the other.

▶ The procedure is iterated until no such transformation further reduces the
cost

6/6

▶ Once no joining of neighboring components further reduces the cost, we
consider all pairs of neighboring components (depicted in green) and all
nodes at the shared boundary (depicted in black)

and all possibilities of
moving nodes from one component to the other.

▶ The procedure is iterated until no such transformation further reduces the
cost

6/6

▶ Once no joining of neighboring components further reduces the cost, we
consider all pairs of neighboring components (depicted in green) and all
nodes at the shared boundary (depicted in black) and all possibilities of
moving nodes from one component to the other.

▶ The procedure is iterated until no such transformation further reduces the
cost

6/6

▶ Once no joining of neighboring components further reduces the cost, we
consider all pairs of neighboring components (depicted in green) and all
nodes at the shared boundary (depicted in black) and all possibilities of
moving nodes from one component to the other.

▶ The procedure is iterated until no such transformation further reduces the
cost

6/6

▶ Once no joining of neighboring components further reduces the cost, we
consider all pairs of neighboring components (depicted in green) and all
nodes at the shared boundary (depicted in black) and all possibilities of
moving nodes from one component to the other.

▶ The procedure is iterated until no such transformation further reduces the
cost

6/6

▶ Once no joining of neighboring components further reduces the cost, we
consider all pairs of neighboring components (depicted in green) and all
nodes at the shared boundary (depicted in black) and all possibilities of
moving nodes from one component to the other.

▶ The procedure is iterated until no such transformation further reduces the
cost

6/6

▶ Once no joining of neighboring components further reduces the cost, we
consider all pairs of neighboring components (depicted in green) and all
nodes at the shared boundary (depicted in black) and all possibilities of
moving nodes from one component to the other.

▶ The procedure is iterated until no such transformation further reduces the
cost

