Machine Learning I

B. Andres, J. Irmai, J. Presberger, D. Stein, S. Zhao

Machine Learning for Computer Vision
TU Dresden

Winter Term 2023/2024

Deciding with Binary Decision Trees

Contents. This part of the course is about a special case of supervised learning: the supervised learning of binary decision trees.

- We state the problem by defining labeled data, a family of functions, a regularizer and a loss function
- We prove that the problem is hard to solve (technically: NP-hard), by relating it to the exact cover by 3 -sets problem.

Deciding with Binary Decision Trees

Data

We consider binary attributes. More specifically, we consider some finite, non-empty set V, called the set of attributes, and labeled data $T=(S, X, x, y)$ such that $X=\{0,1\}^{V}$.

Hence, $x: S \rightarrow\{0,1\}^{V}$ and $y: S \rightarrow\{0,1\}$.

Deciding with Binary Decision Trees

Definition. A tuple $\left(V, Y, D, D^{\prime}, d^{*}, E, \delta, v, y\right)$ is called a V-variate Y-valued binary decision tree (BDT) iff the following conditions hold:

1. $V \neq \emptyset$ is finite (set of variables)
2. $Y \neq \emptyset$ is finite (set of values)
3. $\left(D \cup D^{\prime}, E\right)$ is a finite, non-empty directed binary tree with root d^{*}
4. every $d \in D^{\prime}$ is a leaf
5. $\delta: E \rightarrow\{0,1\}$

6. $v: D \rightarrow V$
7. $y: D^{\prime} \rightarrow Y$

Definition. For any BDT $\left(V, Y, D, D^{\prime}, d^{*}, E, \delta, v, y\right)$, any $d \in D$ and any $j \in\{0,1\}$, we let $d_{\downarrow j} \in D \cup D^{\prime}$ the unique node such that $e=\left(d, d_{\downarrow j}\right) \in E$ and $\delta(e)=j$.

Deciding with Binary Decision Trees

Definition. For any BDT $\theta=\left(V, Y, D, D^{\prime}, d^{*}, E, \delta, v, y\right)$ and any $d \in D \cup D^{\prime}$, the tuple $\theta[d]=\left(V, Y, D_{2}, D_{2}^{\prime}, d, E^{\prime}, \delta^{\prime}, v^{\prime}, y^{\prime}\right)$ is called the binary decision subtree of θ rooted at d iff

- $\left(D_{2} \cup D_{2}^{\prime}, E^{\prime}\right)$ is the subtree of $\left(D \cup D^{\prime}, E\right)$ rooted at d
- $\delta^{\prime}, v^{\prime}$ and y^{\prime} are the restrictions of δ, v and y to the subsets D_{2}, D_{2}^{\prime} and E^{\prime}

Lemma. For any BDT $\theta=\left(V, Y, D, D^{\prime}, d^{*}, E, \delta, v, y\right)$ and any $d \in D \cup D^{\prime}$, the binary decision subtree $\theta[d]$ is itself a V-variate Y-valued BDT.

Deciding with Binary Decision Trees

Definition. For any BDT $\theta=\left(V, Y, D, D^{\prime}, d^{*}, E, \delta, v, y\right)$, the function defined by θ is the $f_{\theta}:\{0,1\}^{V} \rightarrow Y$ such that $\forall x \in\{0,1\}^{V}$:

$$
\begin{aligned}
f_{\theta}(x) & = \begin{cases}y\left(d^{*}\right) & \text { if } D=\emptyset \\
f_{\theta\left[d_{\downarrow 0}^{*}\right]}(x) & \text { if } D \neq \emptyset \wedge x_{v\left(d^{*}\right)}=0 \\
f_{\theta\left[d_{\downarrow 1}^{*}\right]}(x) & \text { if } D \neq \emptyset \wedge x_{v\left(d^{*}\right)}=1\end{cases} \\
& = \begin{cases}y\left(d^{*}\right) & \text { if } D=\emptyset \\
\left(1-x_{v\left(d^{*}\right)}\right) f_{\theta\left[d_{\downarrow 0}^{*}\right]}(x)+x_{v\left(d^{*}\right)} f_{\theta\left[d_{\downarrow 1}\right]}(x) & \text { otherwise }\end{cases}
\end{aligned}
$$

Note. The set Θ of V-variate $Y=\{0,1\}$-valued BDTs can be identified with a subset of V-variate DNFs.

Deciding with Binary Decision Trees

Regularization

In order to quantify the complexity of BDTs, we consider the following regularizer.
Definition. For any BDT $\theta=\left(V, Y, D, D^{\prime}, d^{*}, E, \delta, v, y\right)$, the depth of θ is the $R(\theta) \in \mathbb{N}$ such that

$$
R(\theta)= \begin{cases}0 & \text { if } D=\emptyset \tag{1}\\ 1+\max \left\{R\left(\theta\left[d_{\downarrow 0}^{*}\right]\right), R\left(\theta\left[d_{\downarrow 1}^{*}\right]\right)\right\} & \text { otherwise }\end{cases}
$$

Deciding with Binary Decision Trees

Loss function

We consider the $\mathbf{0} / \mathbf{1}$-loss L, i.e.

$$
\forall r \in \mathbb{R} \forall \hat{y} \in\{0,1\}: \quad L(r, \hat{y})= \begin{cases}0 & r=\hat{y} \tag{2}\\ 1 & \text { otherwise }\end{cases}
$$

Deciding with Binary Decision Trees

Definition. For any $\lambda \in \mathbb{R}_{0}^{+}$, the instance of the supervised learning problem of BDTs with respect to T, L, R and λ has the form

$$
\begin{equation*}
\min _{\theta \in \Theta} \quad \lambda R(\theta)+\frac{1}{|S|} \sum_{s \in S} L\left(f_{\theta}\left(x_{s}\right), y_{s}\right) \tag{3}
\end{equation*}
$$

Definition. For any $m \in \mathbb{N}$, the bounded depth BDT problem w.r.t. T and m is to decide whether there exists a BDT $\theta=\left(V, Y, D, D^{\prime}, d^{*}, E, \delta, v, y^{\prime}\right)$ such that

$$
\begin{align*}
R(\theta) & \leq m \tag{4}\\
\forall s \in S: \quad f_{\theta}\left(x_{s}\right) & =y_{s} . \tag{5}
\end{align*}
$$

Deciding with Binary Decision Trees

Next, we will reduce the hard-to-solve (technically: Np-hard) exact cover by 3-sets problem to the bounded depth BDT problem, thereby showing that the latter problem is hard to solve (NP-hard) as well. The reduction is by Haussler (1988).

Definition. For any set S, a cover Σ of S is called exact iff the elements of Σ are pairwise disjoint.

Definition. Let S be any set, and let $\emptyset \notin \Sigma \subseteq 2^{S}$.
Deciding whether there exists a $\Sigma^{\prime} \subseteq \Sigma$ such that Σ^{\prime} is an exact cover of S is called the instance of the exact cover problem w.r.t. S and Σ.
Additionally, if $|S|$ is an integer multiple of three and any $U \in \Sigma$ is such that $|U|=3$, the instance of the exact cover problem w.r.t. S and Σ is also called the instance of the exact cover by 3 -sets problem with respect to S and Σ.

Proof. For any instance $\left(S^{\prime}, \Sigma\right)$ of the exact cover by 3 -sets problem and the $n \in \mathbb{N}$ such that $\left|S^{\prime}\right|=3 n$, we construct the instance of the m-bounded depth BDT problem such that

- $V=\Sigma$
- $S=S^{\prime} \cup\{0\}$
- $x: S \rightarrow\{0,1\}^{\Sigma}$ such that $x_{0}=0$ and

$$
\forall s \in S^{\prime} \forall \sigma \in \Sigma: \quad x_{s}(\sigma)= \begin{cases}1 & \text { if } s \in \sigma \tag{6}\\ 0 & \text { otherwise }\end{cases}
$$

- $y: S \rightarrow\{0,1\}$ such that $y_{0}=0$ and $\forall s \in S^{\prime}: y_{s}=1$.
- $m=n$

We show that the instance the exact cover problem has a solution iff the instance of the bounded depth BDT problem has a solution.

Deciding with Binary Decision Trees

(\Rightarrow) Let $\Sigma^{\prime} \subseteq \Sigma$ a solution to the instance of the exact cover problem.
Consider any order on Σ^{\prime} and the bijection $\sigma^{\prime}:[n] \rightarrow \Sigma^{\prime}$ induced by this order.
We show that the BDT θ depicted below solves the instance of the bounded depth BDT problem.

Deciding with Binary Decision Trees

The BDT satisfies $R(\theta)=m$.
The BDT decides the labeled data correctly because

- $f_{\theta}\left(x_{0}\right)=0=y_{0}$
- At each of the m interior nodes, three additional elements of S^{\prime} are mapped to 1 . Thus, all $3 m$ many elements $s \in S^{\prime}$ are mapped to 1 . That is $\forall s \in S^{\prime}: f_{\theta}\left(x_{s}\right)=1=y_{s}$.

Deciding with Binary Decision Trees

(\Leftarrow) Let $\theta=\left(V, Y, D, D^{\prime}, d^{*}, E, \delta, \sigma, y^{\prime}\right)$ a BDT that solves the instance of the bounded depth BDT problem.
W.l.o.g., we assume, for any interior node $d \in D$, that $d_{\downarrow 1}$ is a leaf and $y^{\prime}\left(d_{\downarrow 1}\right)=1$.
Hence, θ is of the form depicted below.

Deciding with Binary Decision Trees
Therefore:

$$
\forall x \in X: \quad f_{\theta}(x)= \begin{cases}1 & \text { if } \exists j \in[N]: x\left(\sigma_{j}\right)=1 \tag{7}\\ 0 & \text { otherwise }\end{cases}
$$

Thus,

$$
\forall s \in S: \quad f_{\theta}\left(x_{s}\right)= \begin{cases}1 & \text { if } \exists j \in[N]: s \in \sigma_{j} \tag{8}\\ 0 & \text { otherwise }\end{cases}
$$

by definition of x in (6).

Consequently,

$$
\begin{equation*}
\bigcup_{j=0}^{N-1} \sigma_{j}=S^{\prime} \tag{9}
\end{equation*}
$$

by definition of y such that $\forall s \in S^{\prime}: y_{s}=1$.

Deciding with Binary Decision Trees

Moreover, $N=m$, because

$$
3 m=\left|S^{\prime}\right| \stackrel{(9)}{=}\left|\bigcup_{j=0}^{N-1} \sigma_{j}\right| \leq \sum_{j=0}^{N-1}\left|\sigma_{j}\right|=\sum_{j=0}^{N-1} 3=3 N \stackrel{(4)}{\leq} 3 m
$$

Therefore:

$$
\begin{equation*}
\forall\{j, l\} \in\binom{[N]}{2}: \quad \sigma_{k} \cap \sigma_{l}=\emptyset \tag{10}
\end{equation*}
$$

Thus,

$$
\bigcup_{j=0}^{N-1} \sigma_{j}
$$

is a solution to the instance of the exact cover by 3-sets problem defined by (S^{\prime}, Σ), by (9) and (10).

Deciding with Binary Decision Trees

Summary:

- BDTs can be identified with a subset of DNFs.
- Supervised learning of BDTs is hard. More specifically, the NP-hard exact cover by 3-sets problem is reducible to the bounded depth BDT problem by construction of Haussler data.

Further reading: Readers who are not familiar with the exact cover by 3-sets problem or the set cover problem will find proofs of their NP-hardness in Appendicies A.1-A. 4 of the lecture notes.

