Machine Learning I

B. Andres, J. Irmai, J. Presberger, D. Stein, S. Zhao

Machine Learning for Computer Vision
TU Dresden

Winter Term 2023/2024

Deciding with Composite Functions

Contents. This part of the course is about a special case of supervised learning: the supervised learning of composite functions, aka. supervised deep learning.

- We define a family of (composite) functions in terms a compute graph.
- We describe two algorithms for computing partial derivatives (if these exist) of such functions, forward propagation and backward propagation.
- In the exercises, we compare these algorithms.

Deciding with Composite Functions

Notation. Let $G=(V, E)$ a digraph.

- For any $v \in V$, let

$$
\begin{array}{lr}
P_{v}=\{u \in V \mid(u, v) \in E\} & \text { the set of parents of } v \\
C_{v}=\{w \in V \mid(v, w) \in E\} & \text { the set of children of } v . \tag{2}
\end{array}
$$

- For any $u, v \in V$, let $\mathcal{P}(u, v)$ denote the set of all $u v$-paths of G. (Any path is a subgraph. For any node u, the $u u$-path ($\{u\}, \emptyset$) exists.)

Let G be acyclic.

- For any $v \in V$, let

$$
\begin{align*}
& A_{v}=\{u \in V \mid \mathcal{P}(u, v) \neq \emptyset\} \backslash\{v\} \quad \text { the set of ancestors of } v \tag{3}\\
& D_{v}=\{w \in V \mid \mathcal{P}(v, w) \neq \emptyset\} \backslash\{v\} \quad \text { the set of descendants of } v \tag{4}
\end{align*}
$$

Definition. A tuple $\left(V, D, D^{\prime}, E, \Theta,\left\{g_{v \theta}: \mathbb{R}^{P_{v}} \rightarrow \mathbb{R}\right\}_{v \in\left(D \cup D^{\prime}\right) \backslash V, \theta \in \Theta}\right)$ is called a compute graph, iff the following conditions hold:

- $G=\left(V \cup D \cup D^{\prime}, E\right)$ is an acyclic digraph.
- For any $v \in V$, called an input node, $P_{v}=\emptyset$.
- For any $v \in D^{\prime}$, called an output node, $C_{v}=\emptyset$.
- For any $v \in D$, called a hidden node, $P_{v} \neq \emptyset$ and $C_{v} \neq \emptyset$.

Definition. For any compute graph
$\left(V, D, D^{\prime}, E, \Theta,\left\{g_{v \theta}: \mathbb{R}^{P_{v}} \rightarrow \mathbb{R}\right\}_{\left.v \in\left(D \cup D^{\prime}\right) \backslash V, \theta \in \Theta\right)}\right.$, any $v \in V \cup D \cup D^{\prime}$ and any $\theta \in \Theta$, let $\alpha_{v \theta}: \mathbb{R}^{V} \rightarrow \mathbb{R}$ such that for all $\hat{x} \in \mathbb{R}^{V}$:

$$
\alpha_{v \theta}(\hat{x})=\left\{\begin{array}{ll}
\hat{x}_{v} & \text { if } v \in V \tag{5}\\
g_{v \theta}\left(\alpha_{P_{v} \theta}(\hat{x})\right) & \text { otherwise }
\end{array} .\right.
$$

For any $\theta \in \Theta$ let $f_{\theta}: \mathbb{R}^{V} \rightarrow \mathbb{R}^{D^{\prime}}$ such that $f_{\theta}=\alpha_{D^{\prime} \theta}$.
We call $\alpha_{v \theta}(\hat{x})$ the activation of v for input \hat{x} and parameters θ.
We call $f_{\theta}(\hat{x})$ the output of the compute graph for input \hat{x} and parameters θ.

Deciding with Composite Functions

Example. Consider $V=\left\{v_{0}, v_{1}, v_{2}\right\}, D=\left\{v_{3}\right\}, D^{\prime}=\left\{v_{4}\right\}$ and the edge set E of the digraph depicted below.

Consider, in addition, $\Theta=\left\{\theta_{0}, \theta_{1}\right\}$ and

$$
\begin{array}{lll}
g_{v_{3} \theta}: & \mathbb{R}^{\left\{v_{0}, v_{1}\right\}} \rightarrow \mathbb{R}: & x \mapsto x_{v_{0}}+\theta_{0} x_{v_{1}} \\
g_{v_{4} \theta}: & \mathbb{R}^{\left\{v_{2}, v_{3}\right\}} \rightarrow \mathbb{R}: & x \mapsto x_{v_{2}}+x_{v_{3}}^{\theta_{1}} \tag{7}
\end{array}
$$

The compute graph ($\left.V, D, D^{\prime}, E, \Theta,\left\{g_{v_{3} \theta}, g_{v_{4} \theta}\right\}\right)$ defines the function

$$
\begin{equation*}
f_{\theta}: \quad \mathbb{R}^{V} \rightarrow \mathbb{R}^{D^{\prime}}: \quad x \mapsto x_{v_{2}}+\left(x_{v_{0}}+\theta_{0} x_{v_{1}}\right)^{\theta_{1}} . \tag{8}
\end{equation*}
$$

Deciding with Composite Functions

Let $\left(V, D, D^{\prime}, E, \Theta,\left\{g_{v \theta}: \mathbb{R}^{P_{v}} \rightarrow \mathbb{R}\right\}_{\left.v \in\left(D \cup D^{\prime}\right) \backslash V, \theta \in \Theta\right)}\right.$ a compute graph with $\left|D^{\prime}\right|=1$ and $\Theta=\mathbb{R}^{J}$ for some finite set $J \neq \emptyset$. Let f be the family of functions defined by this compute graph. The l_{2}-regularized logistic regression problem wrt. f, labeled data $T=\left(S, \mathbb{R}^{V}, x, y\right)$ and $\sigma \in \mathbb{R}^{+}$has the form

$$
\begin{equation*}
\min _{\theta \in \mathbb{R}^{J}} \frac{1}{|S|} \sum_{s \in S}\left(-y_{s} f_{\theta}\left(x_{s}\right)+\log \left(1+2^{f_{\theta}(x)}\right)\right)+\frac{\log e}{2 \sigma^{2}}\|\theta\|^{2} \tag{9}
\end{equation*}
$$

- (9) is analogous to linear logistic regression but can be non-convex for f non-linear wrt. θ.
- If for any $j \in J$ the partial derivative of f wrt. θ_{j} exists, we can search for a local minimum using a steepest descent algorithm.
- To do so, we describe two techniques for computing $\nabla_{\theta} f$, forward propagation and backward propagation.

Deciding with Composite Functions

Lemma. Let $j \in J$. For any $v \in V: \frac{\partial \alpha_{v \theta}}{\partial \theta_{j}}=0$. For any $v \in\left(D \cup D^{\prime}\right) \backslash V$:

$$
\begin{equation*}
\frac{\partial \alpha_{v \theta}}{\partial \theta_{j}}=\sum_{u \in\left(A_{v} \cup\{v\}\right) \backslash V} \frac{\partial g_{u \theta}}{\partial \theta_{j}} \Delta_{u v} \tag{10}
\end{equation*}
$$

with

$$
\begin{equation*}
\Delta_{u v}:=\sum_{\left(V^{\prime}, E^{\prime}\right) \in \mathcal{P}(u, v)} \prod_{\left(u^{\prime}, v^{\prime}\right) \in E^{\prime}} \frac{\partial g_{v^{\prime} \theta}}{\partial \alpha_{u^{\prime} \theta}} . \tag{11}
\end{equation*}
$$

Remark. For any node $u: \Delta_{u u}=1$. For any u, v with $\mathcal{P}(u, v)=\emptyset: \Delta_{u v}=0$. Proof (idea).

$$
\begin{align*}
\frac{\partial \alpha_{v \theta}}{\partial \theta_{j}} & =\frac{\partial g_{v \theta}}{\partial \theta_{j}}+\sum_{u \in P_{v}} \frac{\partial g_{v \theta}}{\partial \alpha_{u \theta}} \frac{\partial \alpha_{u \theta}}{\partial \theta_{j}} \tag{12}\\
& =\frac{\partial g_{v \theta}}{\partial \theta_{j}}+\sum_{u \in P_{v}} \frac{\partial g_{v \theta}}{\partial \alpha_{u \theta}} \frac{\partial g_{u \theta}}{\partial \theta_{j}}+\sum_{u \in P_{v}} \sum_{u^{\prime} \in P_{u}} \frac{\partial g_{v \theta}}{\partial \alpha_{u \theta}} \frac{\partial g_{u \theta}}{\partial \alpha_{u^{\prime} \theta}} \frac{\partial \alpha_{u^{\prime} \theta}}{\partial \theta_{j}} \\
& =\text { repeated application (12) } \\
& =\sum_{u \in\left(A_{v} \cup\{v\}\right) \backslash V} \frac{\partial g_{u \theta}}{\partial \theta_{j}} \sum_{\left(V^{\prime}, E^{\prime}\right) \in \mathcal{P}(u, v)} \prod_{\left(u^{\prime}, v^{\prime}\right) \in E^{\prime}} \frac{\partial g_{v^{\prime} \theta}}{\partial \alpha_{u^{\prime} \theta}}
\end{align*}
$$

Deciding with Composite Functions

Lemma (forward propagation). For all nodes $u \neq w$ such that $\mathcal{P}(u, w) \neq \emptyset$:

$$
\begin{equation*}
\Delta_{u w}=\sum_{v \in P_{w}} \frac{\partial g_{w \theta}}{\partial \alpha_{v \theta}} \Delta_{u v} \tag{13}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
\Delta_{u w} & =\sum_{\left(V^{\prime}, E^{\prime}\right) \in \mathcal{P}(u, w)} \prod_{\left(u^{\prime}, v^{\prime}\right) \in E^{\prime}} \frac{\partial g_{v^{\prime} \theta}}{\partial \alpha_{u^{\prime} \theta}} \\
& =\sum_{v \in P_{w}} \prod_{\left(V^{\prime \prime}, E^{\prime \prime}\right) \in \mathcal{P}(u, v)\left(u^{\prime}, v^{\prime}\right) \in E^{\prime \prime} \cup\{v, w\}} \frac{\partial g_{v^{\prime} \theta}}{\partial \alpha_{u^{\prime} \theta}} \\
& =\sum_{v \in P_{w}} \frac{\partial g_{w \theta}}{\partial \alpha_{v \theta}} \sum_{\left(V^{\prime \prime}, E^{\prime \prime}\right) \in \mathcal{P}(u, v)} \prod_{\left(u^{\prime}, v^{\prime}\right) \in E^{\prime \prime}} \frac{\partial g_{v^{\prime} \theta}}{\partial \alpha_{u^{\prime} \theta}} \\
& =\sum_{v \in P_{w}} \frac{\partial g_{w \theta}}{\partial \alpha_{v \theta}} \Delta_{u v}
\end{aligned}
$$

Deciding with Composite Functions

The forward propagation algorithm computes $\Delta_{u w}$ for one node u and all nodes w. It is defined wrt. an arbitrary partial order $<_{P}$ of the nodes such that

$$
\begin{equation*}
\forall w \in D \cup D^{\prime} \quad \forall w^{\prime} \in P_{w}: \quad w^{\prime}<_{P} w . \tag{14}
\end{equation*}
$$

Input:

Compute graph $\left(V, D, D^{\prime}, E, \Theta,\left\{g_{v \theta}: \mathbb{R}^{P_{v}} \rightarrow \mathbb{R}\right\}_{\left.v \in\left(D \cup D^{\prime}\right) \backslash V, \theta \in \Theta\right)}\right.$
Node $u \in V \cup D \cup D^{\prime}$

$$
\begin{align*}
& \text { for } w \text { ordered by }<_{P} \\
& \text { if } w=u \\
& \Delta_{u w}:=1 \\
& \text { else if } \mathcal{P}(u, w)=\emptyset \\
& \Delta_{u w}:=0 \\
& \text { else } \\
& \quad \Delta_{u w}:=\sum_{v \in P_{w}} \frac{\partial g_{w \theta}}{\partial \alpha_{v \theta}} \Delta_{u v} \tag{13}\\
& \hline
\end{align*}
$$

Deciding with Composite Functions

Lemma (backward propagation). For all nodes $u \neq w$ such that $\mathcal{P}(u, w) \neq \emptyset$:

$$
\begin{equation*}
\Delta_{u w}=\sum_{v \in C_{u}} \frac{\partial g_{v \theta}}{\partial \alpha_{u \theta}} \Delta_{v w} \tag{15}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
\Delta_{u w} & =\sum_{\left(V^{\prime}, E^{\prime}\right) \in \mathcal{P}(u, w)} \prod_{\left(u^{\prime}, v^{\prime}\right) \in E^{\prime}} \frac{\partial g_{v^{\prime} \theta}}{\partial \alpha_{u^{\prime} \theta}} \\
& =\sum_{v \in C_{u}} \sum_{\left(V^{\prime \prime}, E^{\prime \prime}\right) \in \mathcal{P}(v, w)} \prod_{\left(u^{\prime}, v^{\prime}\right) \in E^{\prime \prime} \cup\{(u, v)\}} \frac{\partial g_{v^{\prime} \theta}}{\partial \alpha_{u^{\prime} \theta}} \\
& =\sum_{v \in C_{u}} \frac{\partial g_{v \theta}}{\partial \alpha_{u \theta}} \sum_{\left(V^{\prime \prime}, E^{\prime \prime}\right) \in \mathcal{P}(v, w)} \frac{\partial g_{v^{\prime} \theta}}{\partial \alpha_{u^{\prime} \theta}} \\
& =\sum_{\left.v \in C_{u}, v^{\prime}\right) \in E^{\prime \prime}} \frac{\partial g_{v \theta}}{\partial \alpha_{u \theta}} \Delta_{v w}
\end{aligned}
$$

Deciding with Composite Functions

The backward propagation algorithm computes $\Delta_{u w}$ for one node w and all nodes u. It is defined wrt. an arbitrary partial order $<_{C}$ of the nodes such that

$$
\begin{equation*}
\forall u \in V \cup D \quad \forall v \in C_{u}: \quad v<_{C} u \tag{16}
\end{equation*}
$$

```
Input:
Compute graph \(\left(V, D, D^{\prime}, E, \Theta,\left\{g_{v \theta}: \mathbb{R}^{P v} \rightarrow \mathbb{R}\right\}_{\left.v \in\left(D \cup D^{\prime}\right) \backslash V, \theta \in \Theta\right)}\right)\)
Node \(w \in V \cup D \cup D^{\prime}\)
for \(u\) ordered by \(<_{C}\)
    if \(u=w\)
        \(\Delta_{u w}:=1\)
    else if \(\mathcal{P}(u, w)=\emptyset\)
        \(\Delta_{u w}:=0\)
    else
        \(\Delta_{u w}:=\sum_{v \in C_{u}} \frac{\partial g_{v \theta}}{\partial \alpha_{u \theta}} \Delta_{v w}\)
```

