Machine Learning I

B. Andres, J. Irmai, J. Presberger, D. Stein, S. Zhao

Machine Learning for Computer Vision
TU Dresden

Winter Term 2023/2024

Clustering

Contents.

- This part of the course is about the problem of decomposing (clustering) a graph into components (clusters), without knowing the number, size or any other property of the clusters.

Clustering

Contents.

- This part of the course is about the problem of decomposing (clustering) a graph into components (clusters), without knowing the number, size or any other property of the clusters.
- This generalizes the problem of partitioning a set. It specializes to the latter for complete graphs.

Clustering

Contents.

- This part of the course is about the problem of decomposing (clustering) a graph into components (clusters), without knowing the number, size or any other property of the clusters.
- This generalizes the problem of partitioning a set. It specializes to the latter for complete graphs.
- Analogously, the problem of decomposing a graph is introduced as an unsupervised learning problem w.r.t. constrained data.

Clustering

Decomposition of a graph $G=(V, E)$

Clustering

Multicut of a graph $G=(V, E)$

Clustering

Let $G=(A, E)$ be any graph.

Clustering

Let $G=(A, E)$ be any graph.

Definition.

- A subgraph $G^{\prime}=\left(A^{\prime}, E^{\prime}\right)$ of G is called a component (cluster) of G iff G^{\prime} is non-empty, node-induced (i.e. $E^{\prime}=E \cap\binom{A^{\prime}}{2}$) and connected.

Clustering

Let $G=(A, E)$ be any graph.

Definition.

- A subgraph $G^{\prime}=\left(A^{\prime}, E^{\prime}\right)$ of G is called a component (cluster) of G iff G^{\prime} is non-empty, node-induced (i.e. $E^{\prime}=E \cap\binom{A^{\prime}}{2}$) and connected.
- A partition Π of the node set A is called a decomposition (clustering) of G iff, for every $U \in \Pi$, the subgraph $\left(U, E \cap\binom{U}{2}\right)$ of G induced by U is connected (and thus a component of G).

Clustering

Let $G=(A, E)$ be any graph.

Definition.

- A subgraph $G^{\prime}=\left(A^{\prime}, E^{\prime}\right)$ of G is called a component (cluster) of G iff G^{\prime} is non-empty, node-induced (i.e. $E^{\prime}=E \cap\binom{A^{\prime}}{2}$) and connected.
- A partition Π of the node set A is called a decomposition (clustering) of G iff, for every $U \in \Pi$, the subgraph $\left(U, E \cap\binom{U}{2}\right)$ of G induced by U is connected (and thus a component of G).
- We denote by D_{G} the set of all decompositions of G.

Clustering

Definition.

- A subset $M \subseteq E$ of edges is called a multicut of G iff, for every cycle $C \subseteq E$ of G, we have $|C \cap M| \neq 1$.

Clustering

Definition.

- A subset $M \subseteq E$ of edges is called a multicut of G iff, for every cycle $C \subseteq E$ of G, we have $|C \cap M| \neq 1$.
- We denote by M_{G} the set of all multicuts of G.

Clustering

Definition.

- A subset $M \subseteq E$ of edges is called a multicut of G iff, for every cycle $C \subseteq E$ of G, we have $|C \cap M| \neq 1$.
- We denote by M_{G} the set of all multicuts of G.

Lemma.

- For any decomposition of a graph G, the set of those edges that straddle distinct components is a multicut of G. This multicut is said to be induced by the decomposition.

Clustering

Definition.

- A subset $M \subseteq E$ of edges is called a multicut of G iff, for every cycle $C \subseteq E$ of G, we have $|C \cap M| \neq 1$.
- We denote by M_{G} the set of all multicuts of G.

Lemma.

- For any decomposition of a graph G, the set of those edges that straddle distinct components is a multicut of G. This multicut is said to be induced by the decomposition.
- The map from decompositions to induced multicuts is a bijection from D_{G} to M_{G}.

Clustering

Remarks:

- The characteristic function $y: E \rightarrow\{0,1\}$ of a multicut $y^{-1}(1)$ decides, for every edge $\{a, b\}=e \in E$, whether the incident nodes a and b belong to the same component ($y_{e}=0$) or distinct components $\left(y_{e}=1\right)$.

Clustering

Remarks:

- The characteristic function $y: E \rightarrow\{0,1\}$ of a multicut $y^{-1}(1)$ decides, for every edge $\{a, b\}=e \in E$, whether the incident nodes a and b belong to the same component ($y_{e}=0$) or distinct components ($y_{e}=1$).
- By the definition of a multicut, these decisions are not necessarily independent.

Clustering

Remarks:

- The characteristic function $y: E \rightarrow\{0,1\}$ of a multicut $y^{-1}(1)$ decides, for every edge $\{a, b\}=e \in E$, whether the incident nodes a and b belong to the same component ($y_{e}=0$) or distinct components ($y_{e}=1$).
- By the definition of a multicut, these decisions are not necessarily independent.

Lemma. For any $y: E \rightarrow\{0,1\}$, the set $y^{-1}(1)$ of those edges that are mapped to 1 is a multicut of G iff the following inequalities are satisfied:

$$
\begin{equation*}
\forall C \in \operatorname{cycles}(G) \forall e \in C: \quad y_{e} \leq \sum_{e^{\prime} \in C \backslash\{e\}} y_{e^{\prime}} \tag{1}
\end{equation*}
$$

Clustering

Constrained Data

We reduce the problem of learning and inferring multicuts to the problem of learning and inferring decisions, by defining constrained data (S, X, x, Y) with

$$
\begin{align*}
& S=E \tag{2}\\
& \mathcal{Y}=\left\{y: E \rightarrow\{0,1\} \mid \forall C \in \operatorname{cycles}(G) \forall e \in C: y_{e} \leq \sum_{e^{\prime} \in C \backslash\{e\}} y_{e^{\prime}}\right\} \tag{3}
\end{align*}
$$

Clustering

Familiy of functions

- We consider a finite, non-empty set V, called a set of attributes, and the attribute space $X=\mathbb{R}^{V}$

Clustering

Familiy of functions

- We consider a finite, non-empty set V, called a set of attributes, and the attribute space $X=\mathbb{R}^{V}$
- We consider linear functions. Specifically, we consider $\Theta=\mathbb{R}^{V}$ and $f: \Theta \rightarrow \mathbb{R}^{X}$ such that

$$
\begin{equation*}
\forall \theta \in \Theta \forall \hat{x} \in \mathbb{R}^{V}: \quad f_{\theta}(\hat{x})=\sum_{v \in V} \theta_{v} \hat{x}_{v}=\langle\theta, \hat{x}\rangle \tag{4}
\end{equation*}
$$

Clustering

Random Variables

- For any $\{a, b\}=s \in S=E$, let X_{s} be a random variable whose value is a vector $x_{s} \in \mathbb{R}^{V}$, the attribute vector of s.

Clustering

Random Variables

- For any $\{a, b\}=s \in S=E$, let X_{s} be a random variable whose value is a vector $x_{s} \in \mathbb{R}^{V}$, the attribute vector of s.
- For any $s \in S$, let Y_{s} be a random variable whose value is a binary number $y_{s} \in\{0,1\}$, called the decision of joining $\{a, b\}=s$.

Clustering

Random Variables

- For any $\{a, b\}=s \in S=E$, let X_{s} be a random variable whose value is a vector $x_{s} \in \mathbb{R}^{V}$, the attribute vector of s.
- For any $s \in S$, let Y_{s} be a random variable whose value is a binary number $y_{s} \in\{0,1\}$, called the decision of joining $\{a, b\}=s$.
- For any $v \in V$, let Θ_{v} be a random variable whose value is a real number $\theta_{v} \in \mathbb{R}$, a parameter of the function we seek to learn.

Clustering

Random Variables

- For any $\{a, b\}=s \in S=E$, let X_{s} be a random variable whose value is a vector $x_{s} \in \mathbb{R}^{V}$, the attribute vector of s.
- For any $s \in S$, let Y_{s} be a random variable whose value is a binary number $y_{s} \in\{0,1\}$, called the decision of joining $\{a, b\}=s$.
- For any $v \in V$, let Θ_{v} be a random variable whose value is a real number $\theta_{v} \in \mathbb{R}$, a parameter of the function we seek to learn.
- Let Z be a random variable whose value is a subset $\mathcal{Z} \subseteq\{0,1\}^{S}$ called the set of feasible decisions. For clustering, we are interested in $\mathcal{Z}=\mathcal{Y}$, the set characterizing multicuts of G.

Clustering

Factorization
$P(X, Y, Z, \Theta)=P(Z \mid Y) \prod_{s \in S} P\left(Y_{s} \mid X_{s}, \Theta\right) \prod_{v \in V} P\left(\Theta_{v}\right) \prod_{s \in S} P\left(X_{s}\right)$

Clustering

Factorization

- Supervised learning:

$$
P(\Theta \mid X, Y, Z)
$$

Clustering

Factorization

- Supervised learning:

$$
\begin{aligned}
P(\Theta \mid X, Y, Z) & =\frac{P(X, Y, Z, \Theta)}{P(X, Y, Z)} \\
& =\frac{P(Z \mid Y) P(Y \mid X, \Theta) P(X) P(\Theta)}{P(Z \mid X, Y) P(X, Y)} \\
& =\frac{P(Z \mid Y) P(Y \mid X, \Theta) P(X) P(\Theta)}{P(Z \mid Y) P(X, Y)} \\
& =\frac{P(Y \mid X, \Theta) P(X) P(\Theta)}{P(X, Y)} \\
& \propto P(Y \mid X, \Theta) P(\Theta) \\
& =\prod_{s \in S} P\left(Y_{s} \mid X_{s}, \Theta\right) \prod_{v \in V} P\left(\Theta_{v}\right)
\end{aligned}
$$

Clustering

Factorization

- Inference:

$$
P(Y \mid X, Z, \theta)
$$

Clustering

Factorization

- Inference:

$$
\begin{aligned}
P(Y \mid X, Z, \theta) & =\frac{P(X, Y, Z, \Theta)}{P(X, Z, \Theta)} \\
& =\frac{P(Z \mid Y) P(Y \mid X, \Theta) P(X) P(\Theta)}{P(X, Z, \Theta)} \\
& \propto P(Z \mid Y) P(Y \mid X, \Theta) \\
& =P(Z \mid Y) \prod_{s \in S} P\left(Y_{s} \mid X_{s}, \Theta\right)
\end{aligned}
$$

Clustering

Distributions

- Sigmoid distribution

$$
\begin{equation*}
\forall s \in S: \quad p_{Y_{s} \mid X_{s}, \Theta}(1)=\frac{1}{1+2^{-f_{\theta}\left(x_{s}\right)}} \tag{5}
\end{equation*}
$$

Clustering

Distributions

- Normal distribution with $\sigma \in \mathbb{R}^{+}$:

$$
\begin{equation*}
\forall v \in V: \quad p_{\Theta v}\left(\theta_{v}\right)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\theta_{v}^{2} / 2 \sigma^{2}} \tag{6}
\end{equation*}
$$

Clustering

Distributions

- Uniform distribution on a subset

$$
\forall \mathcal{Z} \subseteq\{0,1\}^{S} \forall y \in\{0,1\}^{S} \quad p_{Z \mid Y}(\mathcal{Z}, y) \propto \begin{cases}1 & \text { if } y \in \mathcal{Z} \\ 0 & \text { otherwise }\end{cases}
$$

Note that $p_{Z \mid Y}(\mathcal{Y}, y)$ is non-zero iff the labeling $y: S \rightarrow\{0,1\}$ defines an multicut of G.

Clustering

Lemma. Estimating maximally probable parameters θ, given attributes x and decisions y, i.e.,

$$
\underset{\theta \in \mathbb{R}^{V}}{\operatorname{argmax}} \quad p_{\Theta \mid X, Y, Z}(\theta, x, y, \mathcal{Y})
$$

is an l_{2}-regularized logistic regression problem.

Clustering

Lemma. Estimating maximally probable parameters θ, given attributes x and decisions y, i.e.,

$$
\underset{\theta \in \mathbb{R}^{V}}{\operatorname{argmax}} \quad p_{\Theta \mid X, Y, Z}(\theta, x, y, \mathcal{Y})
$$

is an l_{2}-regularized logistic regression problem.

Proof. Analogous to the case of deciding, we obtain:

$$
\begin{aligned}
\underset{\theta \in \mathbb{R}^{V}}{\operatorname{argmax}} & p_{\Theta \mid X, Y, Z}(\theta, x, y, \mathcal{Y}) \\
=\underset{\theta \in \mathbb{R}^{V}}{\operatorname{argmin}} & \sum_{s \in S}\left(-y_{s} f_{\theta}\left(x_{s}\right)+\log \left(1+2^{f_{\theta}\left(x_{s}\right)}\right)\right)+\frac{\log e}{2 \sigma^{2}}\|\theta\|_{2}^{2} .
\end{aligned}
$$

Clustering

Lemma. Estimating maximally probable decisions y, given attributes x, given the set of feasible decisions \mathcal{Y}, and given parameters θ, i.e.,

$$
\underset{y \in\{0,1\}^{S}}{\operatorname{argmax}} \quad p_{Y \mid X, Z, \Theta}(y, x, \mathcal{Y}, \theta)
$$

assumes the form of the minimum cost multicut problem:

$$
\begin{array}{ll}
\underset{y: E \rightarrow\{0,1\}}{\operatorname{argmin}} & \sum_{e \in E}\left(-\left\langle\theta, x_{e}\right\rangle\right) y_{e} \\
\text { subject to } & \forall C \in \operatorname{cycles}(G) \forall e \in C: \quad y_{e} \leq \sum_{e^{\prime} \in C \backslash\{e\}} y_{e^{\prime}} \tag{9}
\end{array}
$$

Clustering

Lemma. Estimating maximally probable decisions y, given attributes x, given the set of feasible decisions \mathcal{Y}, and given parameters θ, i.e.,

$$
\begin{equation*}
\underset{y \in\{0,1\}^{S}}{\operatorname{argmax}} \quad p_{Y \mid X, Z, \Theta}(y, x, \mathcal{Y}, \theta) \tag{7}
\end{equation*}
$$

assumes the form of the minimum cost multicut problem:

$$
\begin{array}{ll}
\underset{y: E \rightarrow\{0,1\}}{\operatorname{argmin}} & \sum_{e \in E}\left(-\left\langle\theta, x_{e}\right\rangle\right) y_{e} \\
\text { subject to } & \forall C \in \operatorname{cycles}(G) \forall e \in C: \quad y_{e} \leq \sum_{e^{\prime} \in C \backslash\{e\}} y_{e^{\prime}} \tag{9}
\end{array}
$$

Theorem. The minimum cost multicut problem is NP-hard.

Bansal et al. (2004) reduce this problem to the k terminal cut problem whose NP-hardness is an important result Dahlhaus et al. (1994).

We will generalize the three local search algorithms we have defined for the set partition problem to the minimum cost multicut problem.

We will generalize the three local search algorithms we have defined for the set partition problem to the minimum cost multicut problem.

For simplicity, we define $c: E \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\forall e \in S: \quad c_{e}=-\left\langle\theta, x_{e}\right\rangle \tag{10}
\end{equation*}
$$

and write the (linear) cost function $\varphi:\{0,1\}^{E} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\forall y \in\{0,1\}^{E}: \quad \varphi(y)=\sum_{e \in E} c_{e} y_{e} \tag{11}
\end{equation*}
$$

Clustering

Greedy joining algorithm:

- The greedy joining algorithm is a local search algorithm that starts from any initial decomposition.

Clustering

Greedy joining algorithm:

- The greedy joining algorithm is a local search algorithm that starts from any initial decomposition.
- It searches for decompositions with lower cost by joining pairs of neighboring (!) components recursively.

Clustering

Greedy joining algorithm:

- The greedy joining algorithm is a local search algorithm that starts from any initial decomposition.
- It searches for decompositions with lower cost by joining pairs of neighboring (!) components recursively.
- As components can only grow and the number of components decreases by one in every step, one typically starts from the finest decomposition Π_{0} of A into one-elementary components.

Clustering

Definition. Let $G=(A, E)$ be any graph.

Clustering

Definition. Let $G=(A, E)$ be any graph.

- For any disjoint sets $B, C \subseteq A$, the pair $\{B, C\}$ is called neighboring in G iff there exist nodes $b \in B$ and $c \in C$ such that $\{b, c\} \in E$.

Clustering

Definition. Let $G=(A, E)$ be any graph.

- For any disjoint sets $B, C \subseteq A$, the pair $\{B, C\}$ is called neighboring in G iff there exist nodes $b \in B$ and $c \in C$ such that $\{b, c\} \in E$.
- For any decomposition Π of a graph $G=(A, E)$, we define

$$
\begin{equation*}
\mathcal{E}_{\Pi}=\left\{\left.\{B, C\} \in\binom{\Pi}{2} \right\rvert\, \exists b \in B \exists c \in C:\{b, c\} \in E\right\} . \tag{12}
\end{equation*}
$$

Clustering

Definition. Let $G=(A, E)$ be any graph.

- For any disjoint sets $B, C \subseteq A$, the pair $\{B, C\}$ is called neighboring in G iff there exist nodes $b \in B$ and $c \in C$ such that $\{b, c\} \in E$.
- For any decomposition Π of a graph $G=(A, E)$, we define

$$
\begin{equation*}
\mathcal{E}_{\Pi}=\left\{\left.\{B, C\} \in\binom{\Pi}{2} \right\rvert\, \exists b \in B \exists c \in C:\{b, c\} \in E\right\} . \tag{12}
\end{equation*}
$$

- For any decomposition Π of $G=(A, E)$ and any $\{B, C\} \in \mathcal{E}_{\Pi}$, let $\operatorname{join}_{B C}[\Pi]$ be the decomposition of G obtained by joining the sets B and C in Π, i.e.

$$
\begin{equation*}
\operatorname{join}_{B C}[\Pi]=(\Pi \backslash\{B, C\}) \cup\{B \cup C\} . \tag{13}
\end{equation*}
$$

Clustering

$\Pi^{\prime}=$ greedy-joining (Π)
choose $\{B, C\} \in \underset{\left\{B^{\prime}, C^{\prime}\right\} \in \mathcal{E}_{\Pi}}{\operatorname{argmin}} \varphi\left(y^{\text {join }_{B^{\prime} C^{\prime}}[\Pi]}\right)-\varphi\left(y^{\Pi}\right)$
if $\varphi\left(y^{\text {join }}{ }_{B C}[\Pi]\right)-\varphi\left(y^{\Pi}\right)<0$
$\quad \Pi^{\prime}:=$ greedy-joining $\left(\right.$ join $\left._{B C}[\Pi]\right)$
else
$\quad \Pi^{\prime}:=\Pi$

Clustering

Greedy moving algorithm:

- The greedy moving algorithm is a local search algorithm that starts from any initial decomposition, e.g., the fixed point of greedy joining.

Clustering

Greedy moving algorithm:

- The greedy moving algorithm is a local search algorithm that starts from any initial decomposition, e.g., the fixed point of greedy joining.
- It searches for decompositions with lower cost by recursively moving individual nodes from one component to a neighboring! component, possibly a new one.

Clustering

Greedy moving algorithm:

- The greedy moving algorithm is a local search algorithm that starts from any initial decomposition, e.g., the fixed point of greedy joining.
- It searches for decompositions with lower cost by recursively moving individual nodes from one component to a neighboring! component, possibly a new one.
- When a cut node is moved out of a component or a node is moved to a new component, the number of components increases. When the last element is moved out of a component, the number of components decreases.

Clustering

Definition. For any graph $G=(A, E)$ and any decomposition Π of G, the decomposition Π is called coarsest iff, for every $U \in \Pi$, the component ($U, E \cap\binom{U}{2}$) induced by U is maximal.

Clustering

Definition. For any graph $G=(A, E)$ and any decomposition Π of G, the decomposition Π is called coarsest iff, for every $U \in \Pi$, the component ($U, E \cap\binom{U}{2}$) induced by U is maximal.

Lemma. For any graph G, the coarsest decomposition is unique. We denote it by Π_{G}^{*}.

Clustering

Definition. For any graph $G=(A, E)$ and any decomposition Π of G, the decomposition Π is called coarsest iff, for every $U \in \Pi$, the component ($U, E \cap\binom{U}{2}$) induced by U is maximal.

Lemma. For any graph G, the coarsest decomposition is unique. We denote it by Π_{G}^{*}.

Definition. For any graph $G=(A, E)$, any decomposition Π of A and any $a \in A$, choose U_{a} to be the unique $U_{a} \in \Pi$ such that $a \in U_{a}$, and let

$$
\begin{align*}
& \mathcal{N}_{a}=\{\emptyset\} \cup\{W \in \Pi \mid a \notin W \wedge \exists w \in W:\{a, w\} \in E\} \tag{14}\\
& G_{a}=\left(U_{a} \backslash\{a\}, E \cap\binom{U_{a} \backslash\{a\}}{2}\right) \tag{15}
\end{align*}
$$

For any $U \in \mathcal{N}_{a}$, let move $_{a U}[\Pi]$ the decomposition of A obtained by moving the node a to the set U, i.e.

$$
\begin{equation*}
\operatorname{move}_{a U}[\Pi]=\Pi \backslash\left\{U_{a}, U\right\} \cup\{U \cup\{a\}\} \cup \Pi_{G_{a}}^{*} \tag{16}
\end{equation*}
$$

Clustering

$$
\begin{aligned}
& \Pi^{\prime}=\text { greedy-moving }(\Pi) \\
& \text { choose }(a, U) \in \underset{a^{\prime} \in A, U^{\prime} \in \mathcal{N}_{a^{\prime}}}{\operatorname{argmin}} \varphi\left(y^{\text {move }_{a^{\prime} U^{\prime}}[\Pi]}\right)-\varphi\left(y^{\Pi}\right) \\
& \text { if } \varphi\left(y^{\text {move }_{a U}[\Pi]}\right)-\varphi\left(y^{\Pi}\right)<0 \\
& \quad \Pi^{\prime}:=\text { greedy-moving }\left(\text { move }_{a U}[\Pi]\right) \\
& \text { else } \\
& \quad \Pi^{\prime}:=\Pi
\end{aligned}
$$

Clustering

$$
\begin{aligned}
& \Pi^{\prime}=\text { greedy-moving }(\Pi) \\
& \text { choose }(a, U) \in \underset{a^{\prime} \in A, U^{\prime} \in \mathcal{N}_{a^{\prime}}}{\operatorname{argmin}} \varphi\left(y^{\text {move }_{a^{\prime} U^{\prime}}[\Pi]}\right)-\varphi\left(y^{\Pi}\right) \\
& \text { if } \varphi\left(y^{\text {move }_{a U}[\Pi]}\right)-\varphi\left(y^{\Pi}\right)<0 \\
& \quad \Pi^{\prime}:=\text { greedy-moving }\left(\text { move }_{a U}[\Pi]\right) \\
& \text { else } \\
& \quad \Pi^{\prime}:=\Pi
\end{aligned}
$$

A generalization of this algorithm by means of the technique of Kernighan and Lin (1970) is analogous to the greedy moving algorithm for the set partition problem.

Clustering

Summary.

- Learning and inferring decompositions (clusterings) of a graph is an unsupervised learning problem w.r.t. constrained data whose feasible labelings characterize the multicuts of the graph

Clustering

Summary.

- Learning and inferring decompositions (clusterings) of a graph is an unsupervised learning problem w.r.t. constrained data whose feasible labelings characterize the multicuts of the graph
- The supervised learning problem can assume the form of l_{2}-regularized logistic regression where samples are pairs of neighboring nodes and decisions indicate whether these nodes are in the same or distinct components

Clustering

Summary.

- Learning and inferring decompositions (clusterings) of a graph is an unsupervised learning problem w.r.t. constrained data whose feasible labelings characterize the multicuts of the graph
- The supervised learning problem can assume the form of l_{2}-regularized logistic regression where samples are pairs of neighboring nodes and decisions indicate whether these nodes are in the same or distinct components
- The inference problem assumes the form of the NP-hard minimum cost multicut problem

Clustering

Summary.

- Learning and inferring decompositions (clusterings) of a graph is an unsupervised learning problem w.r.t. constrained data whose feasible labelings characterize the multicuts of the graph
- The supervised learning problem can assume the form of l_{2}-regularized logistic regression where samples are pairs of neighboring nodes and decisions indicate whether these nodes are in the same or distinct components
- The inference problem assumes the form of the NP-hard minimum cost multicut problem
- Local search algorithms for tackling this problem are greedy joining, greedy moving, and greedy moving using the technique of Kernighan and Lin.

