Machine Learning I

B. Andres, J. Irmai, J. Presberger, D. Stein, S. Zhao

Machine Learning for Computer Vision
TU Dresden

Winter Term 2023/2024

Ordering

Contents.

- This part of the course is about the problem of learning to order a finite set.

Ordering

Contents.

- This part of the course is about the problem of learning to order a finite set.
- This problem is introduced as an unsupervised learning problem w.r.t. constrained data.

Ordering

We consider any finite, non-empty set A that we seek to order.

Ordering

We consider any finite, non-empty set A that we seek to order.

Definition. A strict order on A is a binary relation $<\subseteq A \times A$ that satisfies the following conditions:

$$
\begin{align*}
\forall a \in A: & \neg a<a \tag{1}\\
\forall\{a, b\} \in\binom{A}{2}: & a<b \text { xor } b<a \tag{2}\\
\forall\{a, b, c\} \in\binom{A}{3}: & a<b \wedge b<c \Rightarrow a<c \tag{3}
\end{align*}
$$

Ordering

Lemma. The strict orders on A are characterized by the bijections $\alpha:\{0, \ldots,|A|-1\} \rightarrow A$. For any such bijection, consider the order $<_{\alpha}$ such that

$$
\begin{equation*}
\forall a, b \in A: \quad a<b \quad \Leftrightarrow \quad \alpha^{-1}(a)<\alpha^{-1}(b) . \tag{4}
\end{equation*}
$$

Ordering

Lemma. The strict orders on A are characterized by the bijections $\alpha:\{0, \ldots,|A|-1\} \rightarrow A$. For any such bijection, consider the order $<_{\alpha}$ such that

$$
\begin{equation*}
\forall a, b \in A: \quad a<b \quad \Leftrightarrow \quad \alpha^{-1}(a)<\alpha^{-1}(b) . \tag{4}
\end{equation*}
$$

Lemma. The strict orders on A are characterized by those

$$
\begin{equation*}
y:\{(a, b) \in A \times A \mid a \neq b\} \rightarrow\{0,1\} \tag{5}
\end{equation*}
$$

that satisfy the following conditions:

$$
\begin{align*}
\forall a \in A \forall b \in A \backslash\{a\}: & y_{a b}+y_{b a}=1 \tag{6}\\
\forall a \in A \forall b \in A \backslash\{a\} \forall c \in A \backslash\{a, b\}: & y_{a b}+y_{b c}-1 \leq y_{a c} \tag{7}
\end{align*}
$$

Ordering

Constrained Data

We reduce the problem of learning and inferring orders to the problem of learning and inferring decisions, by defining constrained data (S, X, x, Y) with

$$
\begin{align*}
& S=\{(a, b) \in A \times A \mid a \neq b\} \tag{8}\\
& \mathcal{Y}=\left\{y \in\{0,1\}^{S} \mid \forall a \in A \forall b \in A \backslash\{a\}: \quad y_{a b}+y_{b a}=1\right. \\
& \forall a \in A \forall b \in A \backslash\{a\} \forall c \in A \backslash\{a, b\}: \\
& \tag{9}\\
& \left.y_{a b}+y_{b c}-1 \leq y_{a c}\right\}
\end{align*}
$$

Ordering

Familiy of functions

- We consider a finite, non-empty set V, called a set of attributes, and the attribute space $X=\mathbb{R}^{V}$

Ordering

Familiy of functions

- We consider a finite, non-empty set V, called a set of attributes, and the attribute space $X=\mathbb{R}^{V}$
- We consider linear functions. Specifically, we consider $\Theta=\mathbb{R}^{V}$ and $f: \Theta \rightarrow \mathbb{R}^{X}$ such that

$$
\begin{equation*}
\forall \theta \in \Theta \forall \hat{x} \in \mathbb{R}^{V}: \quad f_{\theta}(\hat{x})=\sum_{v \in V} \theta_{v} \hat{x}_{v}=\langle\theta, \hat{x}\rangle . \tag{10}
\end{equation*}
$$

Ordering

Random Variables

- For any $(a, b)=s \in S=E$, let X_{s} be a random variable whose value is a vector $x_{s} \in \mathbb{R}^{V}$, the attribute vector of s.

Ordering

Random Variables

- For any $(a, b)=s \in S=E$, let X_{s} be a random variable whose value is a vector $x_{s} \in \mathbb{R}^{V}$, the attribute vector of s.
- For any $(a, b)=s \in S$, let Y_{s} be a random variable whose value is a binary number $y_{s} \in\{0,1\}$, called the decision placing a before b.

Ordering

Random Variables

- For any $(a, b)=s \in S=E$, let X_{s} be a random variable whose value is a vector $x_{s} \in \mathbb{R}^{V}$, the attribute vector of s.
- For any $(a, b)=s \in S$, let Y_{s} be a random variable whose value is a binary number $y_{s} \in\{0,1\}$, called the decision placing a before b.
- For any $v \in V$, let Θ_{v} be a random variable whose value is a real number $\theta_{v} \in \mathbb{R}$, a parameter of the function we seek to learn.

Ordering

Random Variables

- For any $(a, b)=s \in S=E$, let X_{s} be a random variable whose value is a vector $x_{s} \in \mathbb{R}^{V}$, the attribute vector of s.
- For any $(a, b)=s \in S$, let Y_{s} be a random variable whose value is a binary number $y_{s} \in\{0,1\}$, called the decision placing a before b.
- For any $v \in V$, let Θ_{v} be a random variable whose value is a real number $\theta_{v} \in \mathbb{R}$, a parameter of the function we seek to learn.
- Let Z be a random variable whose value is a subset $\mathcal{Z} \subseteq\{0,1\}^{S}$ called the set of feasible decisions. For ordering, we are interested in $\mathcal{Z}=\mathcal{Y}$, the set of characteristic functions of strict orders on A.

Ordering

Factorization
$P(X, Y, Z, \Theta)=P(Z \mid Y) \prod_{s \in S} P\left(Y_{s} \mid X_{s}, \Theta\right) \prod_{v \in V} P\left(\Theta_{v}\right) \prod_{s \in S} P\left(X_{s}\right)$

Ordering

Factorization

- Supervised learning:

$$
P(\Theta \mid X, Y, Z)
$$

Ordering

Factorization

- Supervised learning:

$$
\begin{aligned}
P(\Theta \mid X, Y, Z) & =\frac{P(X, Y, Z, \Theta)}{P(X, Y, Z)} \\
& =\frac{P(Z \mid Y) P(Y \mid X, \Theta) P(X) P(\Theta)}{P(Z \mid X, Y) P(X, Y)} \\
& =\frac{P(Z \mid Y) P(Y \mid X, \Theta) P(X) P(\Theta)}{P(Z \mid Y) P(X, Y)} \\
& =\frac{P(Y \mid X, \Theta) P(X) P(\Theta)}{P(X, Y)} \\
& \propto P(Y \mid X, \Theta) P(\Theta) \\
& =\prod_{s \in S} P\left(Y_{s} \mid X_{s}, \Theta\right) \prod_{v \in V} P\left(\Theta_{v}\right)
\end{aligned}
$$

Ordering

Factorization

- Inference:

$$
P(Y \mid X, Z, \theta)
$$

Ordering

Factorization

- Inference:

$$
\begin{aligned}
P(Y \mid X, Z, \theta) & =\frac{P(X, Y, Z, \Theta)}{P(X, Z, \Theta)} \\
& =\frac{P(Z \mid Y) P(Y \mid X, \Theta) P(X) P(\Theta)}{P(X, Z, \Theta)} \\
& \propto P(Z \mid Y) P(Y \mid X, \Theta) \\
& =P(Z \mid Y) \prod_{s \in S} P\left(Y_{s} \mid X_{s}, \Theta\right)
\end{aligned}
$$

Ordering

Distributions

- Sigmoid distribution

$$
\begin{equation*}
\forall s \in S: \quad p_{Y_{s} \mid X_{s}, \Theta}(1)=\frac{1}{1+2^{-f_{\theta}\left(x_{s}\right)}} \tag{11}
\end{equation*}
$$

Ordering

Distributions

- Normal distribution with $\sigma \in \mathbb{R}^{+}$:

$$
\begin{equation*}
\forall v \in V: \quad p_{\Theta v}\left(\theta_{v}\right)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\theta_{v}^{2} / 2 \sigma^{2}} \tag{12}
\end{equation*}
$$

Ordering

Distributions

- Uniform distribution on a subset

$$
\forall \mathcal{Z} \subseteq\{0,1\}^{S} \forall y \in\{0,1\}^{S} \quad p_{Z \mid Y}(\mathcal{Z}, y) \propto \begin{cases}1 & \text { if } y \in \mathcal{Z} \\ 0 & \text { otherwise }\end{cases}
$$

Note that $p_{Z \mid Y}(\mathcal{Y}, y)$ is non-zero iff the labeling $y: S \rightarrow\{0,1\}$ defines an order on A.

Ordering

Lemma. Estimating maximally probable parameters θ, given attributes x and decisions y, i.e.,

$$
\underset{\theta \in \mathbb{R}^{V}}{\operatorname{argmax}} \quad p_{\Theta \mid X, Y, Z}(\theta, x, y, \mathcal{Y})
$$

is an l_{2}-regularized logistic regression problem.

Ordering

Lemma. Estimating maximally probable parameters θ, given attributes x and decisions y, i.e.,

$$
\underset{\theta \in \mathbb{R}^{V}}{\operatorname{argmax}} \quad p_{\Theta \mid X, Y, Z}(\theta, x, y, \mathcal{Y})
$$

is an l_{2}-regularized logistic regression problem.

Proof. Analogous to the case of deciding, we obtain:

$$
\begin{aligned}
\underset{\theta \in \mathbb{R}^{V}}{\operatorname{argmax}} & p_{\Theta \mid X, Y, Z}(\theta, x, y, \mathcal{Y}) \\
=\underset{\theta \in \mathbb{R}^{V}}{\operatorname{argmin}} & \sum_{s \in S}\left(-y_{s} f_{\theta}\left(x_{s}\right)+\log \left(1+2^{f_{\theta}\left(x_{s}\right)}\right)\right)+\frac{\log e}{2 \sigma^{2}}\|\theta\|_{2}^{2} .
\end{aligned}
$$

Ordering

Lemma. Estimating maximally probable decisions y, given attributes x, given the set of feasible decisions \mathcal{Y}, and given parameters θ, i.e.,

$$
\begin{equation*}
\underset{y \in\{0,1\}^{S}}{\operatorname{argmax}} \quad p_{Y \mid X, Z, \Theta}(y, x, \mathcal{Y}, \theta) \tag{13}
\end{equation*}
$$

assumes the form of the linear ordering problem:

$$
\begin{array}{cl}
\underset{y: S \rightarrow\{0,1\}}{\operatorname{argmin}} & \sum_{s \in S}\left(-\left\langle\theta, x_{s}\right\rangle\right) y_{s} \\
\text { subject to } & \forall a \in A \forall b \in A \backslash\{a\}: \quad y_{a b}+y_{b a}=1 \\
& \forall a \in A \forall b \in A \backslash\{a\} \forall c \in A \backslash\{a, b\}: \\
& y_{a b}+y_{b c}-1 \leq y_{a c} \tag{16}
\end{array}
$$

Ordering

Lemma. Estimating maximally probable decisions y, given attributes x, given the set of feasible decisions \mathcal{Y}, and given parameters θ, i.e.,

$$
\begin{equation*}
\underset{y \in\{0,1\}^{S}}{\operatorname{argmax}} \quad p_{Y \mid X, Z, \Theta}(y, x, \mathcal{Y}, \theta) \tag{13}
\end{equation*}
$$

assumes the form of the linear ordering problem:

$$
\begin{array}{cl}
\underset{y: S \rightarrow\{0,1\}}{\operatorname{argmin}} & \sum_{s \in S}\left(-\left\langle\theta, x_{s}\right\rangle\right) y_{s} \\
\text { subject to } & \forall a \in A \forall b \in A \backslash\{a\}: \quad y_{a b}+y_{b a}=1 \\
& \forall a \in A \forall b \in A \backslash\{a\} \forall c \in A \backslash\{a, b\}: \\
& y_{a b}+y_{b c}-1 \leq y_{a c} \tag{16}
\end{array}
$$

Theorem. The linear ordering problem is NP-hard.

The linear ordering problem has been studied intensively. A comprehensive survey is by Martí and Reinelt (2011). Pioneering research is by Grötschel (1984).

We define two local search algorithms for the linear ordering problem.

We define two local search algorithms for the linear ordering problem.

For simplicity, we define $c: S \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\forall s \in S: \quad c_{s}=-\left\langle\theta, x_{s}\right\rangle \tag{17}
\end{equation*}
$$

and write the (linear) cost function $\varphi:\{0,1\}^{S} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\forall y \in\{0,1\}^{S}: \quad \varphi(y)=\sum_{s \in S} c_{s} y_{s} \tag{18}
\end{equation*}
$$

Ordering

Greedy transposition algorithm:

- The greedy transposition algorithm starts from any initial strict order.

Ordering

Greedy transposition algorithm:

- The greedy transposition algorithm starts from any initial strict order.
- It searches for strict orders with lower objective value by swapping pairs of elements

Ordering

Greedy transposition algorithm:

- The greedy transposition algorithm starts from any initial strict order.
- It searches for strict orders with lower objective value by swapping pairs of elements

Definition. For any bijection $\alpha:\{0, \ldots,|A|-1\} \rightarrow A$ and any $j, k \in\{0, \ldots,|A|-1\}$, let transpose ${ }_{j k}[\alpha]$ the bijection obtained from α by swapping α_{j} and α_{k}, i.e.

$$
\forall l \in\{0, \ldots,|A|-1\}: \quad \operatorname{transpose}_{j k}[\alpha](l)= \begin{cases}\alpha_{k} & \text { if } l=j \tag{19}\\ \alpha_{j} & \text { if } l=k \\ \alpha_{l} & \text { otherwise }\end{cases}
$$

Ordering

$$
\begin{aligned}
& \alpha^{\prime}=\text { greedy-transposition }(\alpha) \\
& \text { choose }(j, k) \in \underset{0<j^{\prime}<k^{\prime}<|A|}{\operatorname{argmin}} \varphi\left(y^{\text {transpose }_{j^{\prime} k^{\prime}}[\alpha]}\right)-\varphi\left(y^{\alpha}\right) \\
& \text { if } \varphi\left(y^{\text {transpose }_{j k}[\alpha]}\right)-\varphi\left(y^{\alpha}\right)<0 \\
& \alpha^{\prime}:=\text { greedy-transposition }\left(\operatorname{transpose}_{j k}[\alpha]\right) \\
& \text { else } \\
& \alpha^{\prime}:=\alpha
\end{aligned}
$$

Ordering

Greedy transposition using the technique of Kernighan and Lin (1970)

```
    \(\alpha^{\prime}=\) greedy-transposition-kl \((\alpha)\)
    \(\alpha^{0}:=\alpha\)
    \(\delta_{0}:=0\)
    \(J_{0}:=\{0, \ldots,|A|-1\}\)
    \(t:=0\)
    repeat (build sequence of swaps)
        choose \((j, k) \in \operatorname{argmin} \varphi\left(y^{\text {transpose }} j^{\prime} k^{\prime}\left[\alpha^{t}\right]\right)-\varphi\left(y^{\alpha^{t}}\right)\)
                \(\left\{\left(j^{\prime}, k^{\prime}\right) \in J_{t}^{2} \mid j^{\prime}<k^{\prime}\right\}\)
        \(\alpha^{t+1}:=\) transpose \(_{j k}\left[\alpha_{t}\right]\)
        \(\delta_{t+1}:=\varphi\left(y^{\alpha^{t+1}}\right)-\varphi\left(y^{\alpha^{t}}\right)<0\)
        \(J_{t+1}:=J_{t} \backslash\{j, k\} \quad\) (move \(\alpha_{j}\) and \(\alpha_{k}\) only once)
        \(t:=t+1\)
    until \(\left|J_{t}\right|<2\)
    \(\hat{t}:=\min \underset{t^{\prime} \in\{0, \ldots,|A|\}}{\operatorname{argmin}} \sum_{\tau=0}^{t^{\prime}} \delta_{\tau}\)
    (choose sub-sequence)
    if \(\sum_{\tau=0}^{\hat{t}} \delta_{\tau}<0\)
        \(\alpha^{\prime}:=\) greedy-transposition- \(\mathrm{kl}\left(\alpha^{\hat{t}}\right) \quad\) (recurse)
    else
        \(\alpha^{\prime}:=\alpha \quad\) (terminate)
```


Ordering

Summary.

- Learning and inferring orders on a finite set A is an unsupervised learning problem w.r.t. constrained data whose feasible labelings characterize the strict orders on A.

Ordering

Summary.

- Learning and inferring orders on a finite set A is an unsupervised learning problem w.r.t. constrained data whose feasible labelings characterize the strict orders on A.
- The supervised learning problem can assume the form of l_{2}-regularized logistic regression where samples are pairs $(a, b) \in A^{2}$ such that $a \neq b$ and decisions indicate whether $a<b$.

Ordering

Summary.

- Learning and inferring orders on a finite set A is an unsupervised learning problem w.r.t. constrained data whose feasible labelings characterize the strict orders on A.
- The supervised learning problem can assume the form of l_{2}-regularized logistic regression where samples are pairs $(a, b) \in A^{2}$ such that $a \neq b$ and decisions indicate whether $a<b$.
- The inference problem assumes the form of the NP-hard linear ordering problem

Ordering

Summary.

- Learning and inferring orders on a finite set A is an unsupervised learning problem w.r.t. constrained data whose feasible labelings characterize the strict orders on A.
- The supervised learning problem can assume the form of l_{2}-regularized logistic regression where samples are pairs $(a, b) \in A^{2}$ such that $a \neq b$ and decisions indicate whether $a<b$.
- The inference problem assumes the form of the NP-hard linear ordering problem
- Local search algorithms for tackling this problem are greedy transposition and greedy transposition using the technique of Kernighan and Lin.

