Machine Learning I

B. Andres, J. Irmai, J. Presberger, D. Stein, S. Zhao

Machine Learning for Computer Vision
TU Dresden

Winter Term 2023/2024

Classifying

Contents.

- This part of the course introduces the problem of classifying data w.r.t. any given finite number of classes.
- This problem is introduced as an unsupervised learning problem w.r.t. constrained data whose feasible labelings are characteristic functions of maps.

Classifying

We consider

- A finite, non-empty set A whose elements we seek to classify
- A finite, non-empty set B of class labels

Classifying

We consider

- A finite, non-empty set A whose elements we seek to classify
- A finite, non-empty set B of class labels

Learning to classify the elements of A into classes labeled by the elements of B consists in learning a map $\varphi: A \rightarrow B$ that assigns to every element $a \in A$ precisely one class label $\varphi(a) \in B$.

Classifying

We consider

- A finite, non-empty set A whose elements we seek to classify
- A finite, non-empty set B of class labels

Learning to classify the elements of A into classes labeled by the elements of B consists in learning a map $\varphi: A \rightarrow B$ that assigns to every element $a \in A$ precisely one class label $\varphi(a) \in B$.

Maps $\varphi: A \rightarrow B$ are precisely those subsets of $\varphi \subseteq A \times B$ that satisfy

$$
\begin{align*}
\forall a \in A \exists b \in B: & (a, b) \in \varphi \tag{1}\\
\forall a \in A \forall b, b^{\prime} \in B: & (a, b) \in \varphi \wedge\left(a, b^{\prime}\right) \in \varphi \Rightarrow b=b^{\prime} \tag{2}
\end{align*}
$$

Classifying

We consider

- A finite, non-empty set A whose elements we seek to classify
- A finite, non-empty set B of class labels

Learning to classify the elements of A into classes labeled by the elements of B consists in learning a map $\varphi: A \rightarrow B$ that assigns to every element $a \in A$ precisely one class label $\varphi(a) \in B$.

Maps $\varphi: A \rightarrow B$ are precisely those subsets of $\varphi \subseteq A \times B$ that satisfy

$$
\begin{align*}
\forall a \in A \exists b \in B: & (a, b) \in \varphi \tag{1}\\
\forall a \in A \forall b, b^{\prime} \in B: & (a, b) \in \varphi \wedge\left(a, b^{\prime}\right) \in \varphi \Rightarrow b=b^{\prime} \tag{2}
\end{align*}
$$

They are characterized by those functions $y: A \times B \rightarrow\{0,1\}$ that satisfy

$$
\begin{equation*}
\forall a \in A: \quad \sum_{b \in B} y_{a b}=1 \tag{3}
\end{equation*}
$$

Classifying

We reduce the problem of learning and inferring maps to the problem of learning and inferring decisions, by defining constrained data (S, X, x, \mathcal{Y}) with

$$
\begin{align*}
& S=A \times B \tag{4}\\
& \mathcal{Y}=\left\{y \in\{0,1\}^{S} \mid \forall a \in A: \sum_{b \in B} y_{a b}=1\right\} \tag{5}
\end{align*}
$$

Classifying

We reduce the problem of learning and inferring maps to the problem of learning and inferring decisions, by defining constrained data (S, X, x, \mathcal{Y}) with

$$
\begin{align*}
& S=A \times B \tag{4}\\
& \mathcal{Y}=\left\{y \in\{0,1\}^{S} \mid \forall a \in A: \sum_{b \in B} y_{a b}=1\right\} \tag{5}
\end{align*}
$$

More specifically, we consider

- a finite, non-empty set V, called a set of attributes

Classifying

We reduce the problem of learning and inferring maps to the problem of learning and inferring decisions, by defining constrained data (S, X, x, \mathcal{Y}) with

$$
\begin{align*}
& S=A \times B \tag{4}\\
& \mathcal{Y}=\left\{y \in\{0,1\}^{S} \mid \forall a \in A: \sum_{b \in B} y_{a b}=1\right\} \tag{5}
\end{align*}
$$

More specifically, we consider

- a finite, non-empty set V, called a set of attributes
- the attribute space $X=B \times \mathbb{R}^{V}$ such that, for any $(a, b) \in A \times B$, the class label b is the first attribute of (a, b), i.e.:

$$
\begin{equation*}
\forall a \in A \forall b \in B \exists \hat{x} \in \mathbb{R}^{V}: \quad x_{a b}=(b, \hat{x}) \tag{6}
\end{equation*}
$$

Classifying

Familiy of functions

We consider linear functions with a separate set of coefficients for every class label. Specifically, we consider $\Theta=\mathbb{R}^{B \times V}$ and $f: \Theta \rightarrow \mathbb{R}^{X}$ such that

$$
\begin{equation*}
\forall \theta \in \Theta \forall b \in B \forall \hat{x} \in \mathbb{R}^{V}: \quad f_{\theta}((b, \hat{x}))=\sum_{v \in V} \theta_{b v} \hat{x}_{v}=\left\langle\theta_{b}, \hat{x}\right\rangle \tag{7}
\end{equation*}
$$

Classifying

Random Variables

- For any $(a, b) \in A \times B$, let $X_{a b}$ be a random variable whose value is a vector $x_{a b} \in B \times \mathbb{R}^{V}$, the attribute vector of (a, b).

Classifying

Random Variables

- For any $(a, b) \in A \times B$, let $X_{a b}$ be a random variable whose value is a vector $x_{a b} \in B \times \mathbb{R}^{V}$, the attribute vector of (a, b).
- For any $(a, b) \in A \times B$, let $Y_{a b}$ be a random variable whose value is a binary number $y_{a b} \in\{0,1\}$, called the decision of classifying a as b

Classifying

Random Variables

- For any $(a, b) \in A \times B$, let $X_{a b}$ be a random variable whose value is a vector $x_{a b} \in B \times \mathbb{R}^{V}$, the attribute vector of (a, b).
- For any $(a, b) \in A \times B$, let $Y_{a b}$ be a random variable whose value is a binary number $y_{a b} \in\{0,1\}$, called the decision of classifying a as b
- For any $b \in B$ and any $v \in V$, let $\Theta_{b v}$ be a random variable whose value is a real number $\theta_{b v} \in \mathbb{R}$, a parameter of the function we seek to learn

Classifying

Random Variables

- Let Z be a random variable whose value is a subset $\mathcal{Z} \subseteq\{0,1\}^{A \times B}$ called the set of feasible decisions. For multiple label classification, we are interested in $\mathcal{Z}=\mathcal{Y}$, the set of the characteristic functions of all maps from A to B.

Classifying

Factorization

$$
P(X, Y, Z, \Theta)=P(Z \mid Y) \prod_{(a, b) \in A \times B} P\left(Y_{a b} \mid X_{a b}, \Theta\right) \prod_{(b, v) \in B \times V} P\left(\Theta_{b v}\right) \prod_{(a, b) \in A \times B} P\left(X_{a b}\right)
$$

Classifying

Factorization

- Supervised learning:

$$
P(\Theta \mid X, Y, Z)
$$

Classifying

Factorization

- Supervised learning:

$$
\begin{aligned}
P(\Theta \mid X, Y, Z) & =\frac{P(X, Y, Z, \Theta)}{P(X, Y, Z)} \\
& =\frac{P(Z \mid Y) P(Y \mid X, \Theta) P(X) P(\Theta)}{P(Z \mid X, Y) P(X, Y)} \\
& =\frac{P(Z \mid Y) P(Y \mid X, \Theta) P(X) P(\Theta)}{P(Z \mid Y) P(X, Y)} \\
& =\frac{P(Y \mid X, \Theta) P(X) P(\Theta)}{P(X, Y)} \\
& \propto P(Y \mid X, \Theta) P(\Theta) \\
& =\prod_{(a, b) \in A \times B} P\left(Y_{a b} \mid X_{a b}, \Theta\right) \prod_{(b, v) \in B \times V} P\left(\Theta_{b v}\right)
\end{aligned}
$$

Classifying

Factorization

- Inference:

$$
P(Y \mid X, Z, \theta)
$$

Classifying

Factorization

- Inference:

$$
\begin{aligned}
P(Y \mid X, Z, \theta) & =\frac{P(X, Y, Z, \Theta)}{P(X, Z, \Theta)} \\
& =\frac{P(Z \mid Y) P(Y \mid X, \Theta) P(X) P(\Theta)}{P(X, Z, \Theta)} \\
& \propto P(Z \mid Y) P(Y \mid X, \Theta) \\
& =P(Z \mid Y) \prod_{(a, b) \in A \times B} P\left(Y_{a b} \mid X_{a b}, \Theta\right)
\end{aligned}
$$

Classifying

Distributions

- Logistic distribution

$$
\begin{equation*}
\forall a \in A \forall b \in B: \quad p_{Y_{a b} \mid X_{a b}, \Theta}(1)=\frac{1}{1+2^{-f_{\theta}\left(x_{a b}\right)}} \tag{8}
\end{equation*}
$$

Classifying

Distributions

- Normal distribution with $\sigma \in \mathbb{R}^{+}$:

$$
\begin{equation*}
\forall b \in B \forall v \in V: \quad p_{\Theta_{b v}}\left(\theta_{b v}\right)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\theta_{b v}^{2} / 2 \sigma^{2}} \tag{9}
\end{equation*}
$$

Classifying

Distributions

- Uniform distribution on a subset

$$
\forall \mathcal{Z} \subseteq\{0,1\}^{A \times B} \forall y \in\{0,1\}^{A \times B} \quad p_{Z \mid Y}(\mathcal{Z}, y) \propto \begin{cases}1 & \text { if } y \in \mathcal{Z} \\ 0 & \text { otherwise }\end{cases}
$$

Note that $p_{Z \mid Y}(\mathcal{Y}, y)$ is non-zero iff the relation $y^{-1}(1) \subseteq A \times B$ is a map.

Classifying

Lemma. Estimating maximally probable parameters θ, given attributes x and decisions y, i.e.,

$$
\underset{\theta \in \mathbb{R}^{B \times V}}{\operatorname{argmax}} \quad p_{\Theta \mid X, Y, Z}(\theta, x, y, \mathcal{Y})
$$

separates into $|B|$ independent l_{2}-regularized logistic regression problems, each w.r.t. parameters in \mathbb{R}^{V}.

Classifying

Proof. Analogous to the case of deciding, we now obtain:

$$
\begin{aligned}
& \underset{\theta \in \mathbb{R}^{B \times V}}{\operatorname{argmax}} \\
&=\underset{\theta \in \mathbb{R}^{B \times V}}{\operatorname{argmin}} p_{\Theta \mid X, Y, Z}(\theta, x, y, \mathcal{Y}) \\
&(a, b) \in A \times B
\end{aligned}\left(-y_{a b} f_{\theta}\left(x_{a b}\right)+\log \left(1+2^{f_{\theta}\left(x_{a b}\right)}\right)\right)+\frac{\log e}{2 \sigma^{2}}\|\theta\|_{2}^{2} .
$$

Classifying

Proof. Analogous to the case of deciding, we now obtain:

$$
\begin{aligned}
\underset{\theta \in \mathbb{R}^{B \times V}}{\operatorname{argmax}} & p_{\Theta \mid X, Y, Z}(\theta, x, y, \mathcal{Y}) \\
=\underset{\theta \in \mathbb{R}^{B \times V}}{\operatorname{argmin}} & \sum_{(a, b) \in A \times B}\left(-y_{a b} f_{\theta}\left(x_{a b}\right)+\log \left(1+2^{f_{\theta}\left(x_{a b}\right)}\right)\right)+\frac{\log e}{2 \sigma^{2}}\|\theta\|_{2}^{2} .
\end{aligned}
$$

Consider the unique $x^{\prime}: A \times B \rightarrow \mathbb{R}^{V}$ such that, for any $(a, b) \in A \times B$, we have $x_{a b}=\left(b, x_{a b}^{\prime}\right)$.

Classifying

Proof. Analogous to the case of deciding, we now obtain:

$$
\begin{aligned}
& \underset{\theta \in \mathbb{R}^{B \times V}}{\operatorname{argmax}} \\
&=\underset{\theta \in \mathbb{R}^{B \times V}}{\operatorname{argmin}} p_{\Theta \mid X, Y, Z}(\theta, x, y, \mathcal{Y}) \\
&(a, b) \in A \times B
\end{aligned}\left(-y_{a b} f_{\theta}\left(x_{a b}\right)+\log \left(1+2^{f_{\theta}\left(x_{a b}\right)}\right)\right)+\frac{\log e}{2 \sigma^{2}}\|\theta\|_{2}^{2} .
$$

Consider the unique $x^{\prime}: A \times B \rightarrow \mathbb{R}^{V}$ such that, for any $(a, b) \in A \times B$, we have $x_{a b}=\left(b, x_{a b}^{\prime}\right)$. Now:

$$
\begin{aligned}
& \min _{\theta \in \mathbb{R}^{B \times V}} \sum_{(a, b) \in A \times B}\left(-y_{a b}\left\langle\theta_{b}, x_{a b}^{\prime}\right\rangle+\log \left(1+2^{\left\langle\theta_{b}, x_{a b}^{\prime}\right\rangle}\right)\right)+\frac{\log e}{2 \sigma^{2}}\|\theta\|_{2}^{2} \\
= & \min _{\theta \in \mathbb{R}^{B} \times V} \sum_{b \in B}\left(\sum_{a \in A}\left(-y_{a b}\left\langle\theta_{b}, x_{a b}^{\prime}\right\rangle+\log \left(1+2^{\left\langle\theta_{b}, x_{a b}^{\prime}\right\rangle}\right)\right)+\frac{\log e}{2 \sigma^{2}}\left\|\theta_{b \cdot} \cdot\right\|_{2}^{2}\right)
\end{aligned}
$$

Classifying

Proof. Analogous to the case of deciding, we now obtain:

$$
\begin{aligned}
& \underset{\theta \in \mathbb{R}^{B \times V}}{\operatorname{argmax}} \\
&=\underset{\theta \in \mathbb{R}^{B \times V}}{\operatorname{argmin}} p_{\Theta \mid X, Y, Z}(\theta, x, y, \mathcal{Y}) \\
&(a, b) \in A \times B
\end{aligned}\left(-y_{a b} f_{\theta}\left(x_{a b}\right)+\log \left(1+2^{f_{\theta}\left(x_{a b}\right)}\right)\right)+\frac{\log e}{2 \sigma^{2}}\|\theta\|_{2}^{2} .
$$

Consider the unique $x^{\prime}: A \times B \rightarrow \mathbb{R}^{V}$ such that, for any $(a, b) \in A \times B$, we have $x_{a b}=\left(b, x_{a b}^{\prime}\right)$. Now:

$$
\begin{aligned}
& \min _{\theta \in \mathbb{R}^{B \times V}} \sum_{(a, b) \in A \times B}\left(-y_{a b}\left\langle\theta_{b}, x_{a b}^{\prime}\right\rangle+\log \left(1+2^{\left\langle\theta_{b}, x_{a b}^{\prime}\right\rangle}\right)\right)+\frac{\log e}{2 \sigma^{2}}\|\theta\|_{2}^{2} \\
= & \min _{\theta \in \mathbb{R}^{B \times V}} \sum_{b \in B}\left(\sum_{a \in A}\left(-y_{a b}\left\langle\theta_{b}, x_{a b}^{\prime}\right\rangle+\log \left(1+2^{\left\langle\theta_{b}, x_{a b}^{\prime}\right\rangle}\right)\right)+\frac{\log e}{2 \sigma^{2}}\left\|\theta_{b} \cdot\right\|_{2}^{2}\right) \\
= & \sum_{b \in B} \min _{\theta_{b}, \in \mathbb{R}^{V}}\left(\sum_{a \in A}\left(-y_{a b}\left\langle\theta_{b}, x_{a b}^{\prime}\right\rangle+\log \left(1+2^{\left\langle\theta_{b}, x_{a b}^{\prime}\right\rangle}\right)\right)+\frac{\log e}{2 \sigma^{2}}\left\|\theta_{b} \cdot\right\|_{2}^{2}\right) .
\end{aligned}
$$

Classifying

Lemma. For any constrained data as defined above, any $\theta \in \mathbb{R}^{B \times V}$ and any $\hat{y}: A \times B \rightarrow\{0,1\}, \hat{y}$ is a solution to the inference problem

$$
\begin{equation*}
\min _{y \in \mathcal{Y}} \sum_{(a, b) \in A \times B} L\left(f_{\theta}\left(x_{a b}\right), y_{a b}\right) \tag{10}
\end{equation*}
$$

iff there exists an $\varphi: A \rightarrow B$ such that

$$
\begin{equation*}
\forall a \in A: \quad \varphi(a) \in \max _{b \in B}\left\langle\theta_{b \cdot}, x_{a b}^{\prime}\right\rangle \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\forall(a, b) \in A \times B: \quad \hat{y}_{a b}=1 \Leftrightarrow \varphi(a)=b . \tag{12}
\end{equation*}
$$

Classifying

Proof.

$$
\begin{aligned}
& \sum_{(a, b) \in A \times B} L\left(f_{\theta}\left(x_{a b}\right), y_{a b}\right) \\
= & \sum_{(a, b) \in A \times B}\left(L\left(f_{\theta}\left(x_{a b}\right), 1\right) y_{a b}+L\left(f_{\theta}\left(x_{a b}\right), 0\right)\left(1-y_{a b}\right)\right)
\end{aligned}
$$

Classifying

Proof.

$$
\begin{aligned}
& \sum_{(a, b) \in A \times B} L\left(f_{\theta}\left(x_{a b}\right), y_{a b}\right) \\
= & \sum_{(a, b) \in A \times B}\left(L\left(f_{\theta}\left(x_{a b}\right), 1\right) y_{a b}+L\left(f_{\theta}\left(x_{a b}\right), 0\right)\left(1-y_{a b}\right)\right) \\
= & \sum_{(a, b) \in A \times B}\left(L\left(f_{\theta}\left(x_{a b}\right), 1\right)-L\left(f_{\theta}\left(x_{a b}\right), 0\right)\right) y_{a b}+\text { const. }
\end{aligned}
$$

Classifying

Proof.

$$
\begin{aligned}
& \sum_{(a, b) \in A \times B} L\left(f_{\theta}\left(x_{a b}\right), y_{a b}\right) \\
= & \sum_{(a, b) \in A \times B}\left(L\left(f_{\theta}\left(x_{a b}\right), 1\right) y_{a b}+L\left(f_{\theta}\left(x_{a b}\right), 0\right)\left(1-y_{a b}\right)\right) \\
= & \sum_{(a, b) \in A \times B}\left(L\left(f_{\theta}\left(x_{a b}\right), 1\right)-L\left(f_{\theta}\left(x_{a b}\right), 0\right)\right) y_{a b}+\text { const. } \\
= & \sum_{(a, b) \in A \times B}\left(-f_{\theta}\left(x_{a b}\right)\right) y_{a b}
\end{aligned}
$$

Classifying

Proof.

$$
\begin{aligned}
& \sum_{(a, b) \in A \times B} L\left(f_{\theta}\left(x_{a b}\right), y_{a b}\right) \\
= & \sum_{(a, b) \in A \times B}\left(L\left(f_{\theta}\left(x_{a b}\right), 1\right) y_{a b}+L\left(f_{\theta}\left(x_{a b}\right), 0\right)\left(1-y_{a b}\right)\right) \\
= & \sum_{(a, b) \in A \times B}\left(L\left(f_{\theta}\left(x_{a b}\right), 1\right)-L\left(f_{\theta}\left(x_{a b}\right), 0\right)\right) y_{a b}+\text { const. } \\
= & \sum_{(a, b) \in A \times B}\left(-f_{\theta}\left(x_{a b}\right)\right) y_{a b} \\
= & \sum_{(a, b) \in A \times B}\left(-\left\langle\theta_{b}, x_{a b}^{\prime}\right\rangle\right) y_{a b}
\end{aligned} x_{a b}=\left(b, x_{a b}^{\prime}\right)
$$

Classifying

Proof.

$$
\begin{aligned}
& \sum_{(a, b) \in A \times B} L\left(f_{\theta}\left(x_{a b}\right), y_{a b}\right) \\
= & \sum_{(a, b) \in A \times B}\left(L\left(f_{\theta}\left(x_{a b}\right), 1\right) y_{a b}+L\left(f_{\theta}\left(x_{a b}\right), 0\right)\left(1-y_{a b}\right)\right) \\
= & \sum_{(a, b) \in A \times B}\left(L\left(f_{\theta}\left(x_{a b}\right), 1\right)-L\left(f_{\theta}\left(x_{a b}\right), 0\right)\right) y_{a b}+\text { const. } \\
= & \sum_{(a, b) \in A \times B}\left(-f_{\theta}\left(x_{a b}\right)\right) y_{a b} \\
= & \sum_{(a, b) \in A \times B}\left(-\left\langle\theta_{b .}, x_{a b}^{\prime}\right\rangle\right) y_{a b} \\
= & \sum_{a \in A} \sum_{b \in B}\left(-\left\langle\theta_{b .}, x_{a b}^{\prime}\right\rangle\right) y_{a b}
\end{aligned}
$$

Classifying

Summary.

- Classification can be cast as an unsupervised learning problem w.r.t. constrained data defined such that the feasible labelings are characteristic functions of maps.
- In the special case of supervised learning and the logistic loss function, this problem separates into as many independent independent logistic regression problems as there are classes. This is commonly called one-versus-rest learning.

