# Machine Learning 1 - Exercise 4 

Machine Learning for Computer Vision<br>TU Dresden

## Learning of composite functions (deep learning)

a) Prove the statement from the lecture that

$$
\begin{equation*}
\frac{\partial \alpha_{v \theta^{\prime}}}{\partial \theta_{j}^{\prime}}=\sum_{u \in A_{v} \backslash V} \frac{\partial g_{u \theta^{\prime}}}{\partial \theta_{j}^{\prime}} \sum_{\left(V^{\prime}, E^{\prime}\right) \in \mathcal{P}(u, v)} \prod_{\left(u^{\prime}, v^{\prime}\right) \in E^{\prime}} \frac{\partial g_{v^{\prime} \theta}}{\partial \alpha_{u^{\prime} \theta}} \tag{1}
\end{equation*}
$$

b) Consider a compute graph $\left(V, D, D^{\prime}, E, \Theta,\left\{g_{v \theta}\right\}_{v \in\left(D \cup D^{\prime}\right) \backslash V, \theta \in \Theta}\right)$ such that

- $\left|D^{\prime}\right|=1$
- $D=V^{(1)} \cup V^{(2)}$
- For all $v \in V^{(1)}: P_{v}=V$. For all $v \in V^{(2)}: P_{v}=V^{(1)}$. For the single $v \in D^{\prime}: P_{v}=V^{(2)}$.

Assume for any $v \in\left(D \cup D^{\prime}\right) \backslash V$ and any $u \in P_{v}$, the derivative $\left.\frac{\partial g_{v \theta}}{\partial \alpha_{u \theta}}\right|_{\alpha_{P_{v} \theta}(x)}$ is given. Calculate:
(a) The number of multiplications needed to compute $\Delta_{u v}(x, \theta)$ for $v \in D^{\prime}$ and all $u \in V$ by means of forward recursion.
(b) The number of multiplications needed to compute $\Delta_{u v}(x, \theta)$ for $v \in D^{\prime}$ and all $u \in V$ by means of backward recursion.
(c) The speed-up factor from using backward recursion instead of forward recursion.
(d) The speed-up factor under the assumption $\left|V^{(1)}\right|=\frac{2}{3}|V|$ and $\left|V^{(2)}\right|=\frac{1}{3}|V|$.
c) Let $\left(V, D, D^{\prime}, E, \Theta,\left\{g_{v \theta}\right\}_{v \in\left(D \cup D^{\prime}\right) \backslash V, \theta \in \Theta}\right)$ a compute graph such that:

- $D=V^{(1)}$ and $D^{\prime}=\left\{v_{\text {out }}\right\}$
- $E=\left(V \times V^{(1)}\right) \cup\left(V^{(1)} \times\left\{v_{\text {out }}\right\}\right)$
- $\Theta=\mathbb{R}^{E}$
- For all $v \in\left(D \cup D^{\prime}\right) \backslash V$, all $\theta \in \Theta$ and all $x \in \mathbb{R}^{V}: g_{v \theta}\left(\alpha_{P_{v} \theta}(x)\right)=\sum_{u \in P_{v}} \theta_{u v} \alpha_{u \theta}(x)$

The function $f_{\theta}: \mathbb{R}^{V} \rightarrow \mathbb{R}^{\left\{v_{\text {out }}\right\}}$ defined by this compute graph is such that for all $x \in \mathbb{R}^{V}$ :

$$
\begin{equation*}
f_{\theta}(x)=\sum_{v \in V} \sum_{v^{\prime} \in V^{(1)}} \theta_{v^{\prime} v_{\text {out }}} \theta_{v v^{\prime}} x_{v} \tag{2}
\end{equation*}
$$

Given the objective of the $l_{2}$-regularized non-linear logistic regression problem

$$
\begin{equation*}
\varphi(\theta)=\sum_{s \in S}\left(-y_{s} f_{\theta}\left(x_{s}\right)+\log \left(1+2^{f_{\theta}\left(x_{s}\right)}\right)\right)+\frac{\log e}{2 \sigma^{2}}\|\theta\|_{2}^{2} \tag{3}
\end{equation*}
$$

i. Calculate the Hessian of $\varphi$, i.e. $H^{\varphi}$ such that $H_{i j}^{\varphi}=\frac{\partial^{2} \varphi}{\partial \theta_{i} \partial \theta_{j}}$, in terms of the gradient $\nabla_{\theta} f$ and the Hessian $H^{f}$ of $f$. Recall that $\varphi$ is convex in $\theta$ if $z^{T} H^{\varphi} z \geq 0$ for all $z \in \mathbb{R}^{J}$.
ii. Calculate the gradient $\nabla_{\theta} f$ and Hessian $H^{f}$ for $f$, as in (2).

