
Machine Learning 1 – Exercise 4

Machine Learning for Computer Vision
TU Dresden

Learning of composite functions (deep learning)

a) Prove the statement from the lecture that

∂αvθ′

∂θ′j
=

∑
u∈Av\V

∂guθ′

∂θ′j

∑
(V ′,E′)∈P(u,v)

∏
(u′,v′)∈E′

∂gv′θ

∂αu′θ
. (1)

b) Consider a compute graph (V,D,D′, E,Θ, {gvθ}v∈(D∪D′)\V,θ∈Θ) such that

• |D′| = 1

• D = V (1) ∪ V (2)

• For all v ∈ V (1): Pv = V . For all v ∈ V (2): Pv = V (1). For the single v ∈ D′: Pv = V (2).

Assume for any v ∈ (D ∪D′) \ V and any u ∈ Pv, the derivative ∂gvθ

∂αuθ

∣∣∣
αPvθ(x)

is given.

Calculate:

(a) The number of multiplications needed to compute ∆uv(x, θ) for v ∈ D′ and all u ∈ V
by means of forward recursion.

(b) The number of multiplications needed to compute ∆uv(x, θ) for v ∈ D′ and all u ∈ V
by means of backward recursion.

(c) The speed-up factor from using backward recursion instead of forward recursion.

(d) The speed-up factor under the assumption |V (1)| = 2
3 |V | and |V (2)| = 1

3 |V |.

c) Let (V,D,D′, E,Θ, {gvθ}v∈(D∪D′)\V,θ∈Θ) a compute graph such that:

• D = V (1) and D′ = {vout}
• E = (V × V (1)) ∪ (V (1) × {vout})
• Θ = RE

• For all v ∈ (D ∪D′) \ V , all θ ∈ Θ and all x ∈ RV : gvθ(αPvθ(x)) =
∑

u∈Pv
θuv αuθ(x)

The function fθ : RV → R{vout} defined by this compute graph is such that for all x ∈ RV :

fθ(x) =
∑
v∈V

∑
v′∈V (1)

θv′vout θvv′ xv . (2)

Given the objective of the l2-regularized non-linear logistic regression problem

φ(θ) =
∑
s∈S

(
−ysfθ(xs) + log

(
1 + 2fθ(xs)

))
+

log e

2σ2
∥θ∥22 . (3)

i. Calculate the Hessian of φ, i.e. Hφ such that Hφ
ij =

∂2φ
∂θi∂θj

, in terms of the gradient ∇θf

and the Hessian Hf of f . Recall that φ is convex in θ if zTHφz ≥ 0 for all z ∈ RJ .

ii. Calculate the gradient ∇θf and Hessian Hf for f , as in (2).
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