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Definition 1
For anyn €N, any d € {0,...,n}, let

Tng = CJ <{1"'d""}) Cra = RTnd 1)

m=0
and call any c € C),4 an n-variate multi-linear polynomial form of degree at most d.

Example. For n = d = 2, we have

r= (02

m=0

(Do ()

0 1 2
={0ru{{1}, {2} u{{1,2}}
= {Q)v {1}7 {2}7 {17 2}}



Definition 2
Foranym €N, any d € {0,...,n} and any c € Cpq, fc: {0,1}" — R such that

d
vz € {0,1}":  fo(z) := Z Z cy H z; (2)

m=0 ; ({1,,7;;,”}) jed

is called the PBF defined by c.

Example. For any ¢ € Caa, fc:{0,1}2 — R is such that

YV € {0, 1}2: fc(xl,acg) =cp+ C{1}T1 + C{2}7T2 -+ C{1,2}T1%2 .



Lemma 1
Every PBF has a unique multi-linear polynomial form. More precisely,

VneN Vf:{0,1}" - R 3Fic€Cnn f=fc . 3)
Example. For n =d =2 and any f: {0,1}2 — R, the existence of a ¢ € C22 such
that f = f. means

Vo €{0,1}*  f(z1,22) = ¢ + c(13m1 + cay@2 + cq1 2122

Explicitly,
f(0,0) =cy
f(1,0) = cp + cg1y
f(0,1) = ¢y +cq23
f(1,1) =cp+ecqy +eqoy +eqro) -

In this example, a suitable ¢ exists and is defined uniquely by f.



Proof.
> Forany J C {1,...,n}, let 27 € {0,1}" such that

1 ifjed
Viedl,...,n}: J =
A ke {O otherwise

> Now,

vz € {0,1}": fz) = Z CJij

JC{1,...,n} j€J
is written equivalently as
Fa") =
VJ #D: f(a:‘])ZCJJchJ/ .

J'cJ

» Thus, c is defined uniquely (by induction over the cardinality of J).



Definition 3
For anymn € N and any d € {0, ...,n}, let

Fog={f:{0,1}" =R |3c€Cpa: f=fc} 4)

and call any f € F,4 an n-variate PBF of degree at most d.
In addition, call any f € F,2 a quadratic PBF (QPBF).

Note. For any n € N, F},,, is the set of all n-variate PBFs (by Lemma 1).



» Pseudo-Boolean Optimization (PBO): Given n € N and f: {0,1}" —» R,

fz) - (5)

min
z€{0,1}™
» Quadratic Pseudo-Boolean Optimization (QPBO): Given n € N and f € F,2,

mer{%i,?}n f(@) . (6)

» Is QPBO less complex than PBO?



Definition 4

For any n € N and any ¢ € Cyn, define the size of ¢ as

size(c) := Z |J| .

JC{1,...,n}: c;#0

@)



Lemma 2
For any z,y,z € {0,1}:

z=xy & ay—222—2yz+32=0, (8)
z#zy & wzy—2rz—2yz+32>0 . 9)

Proof. By verifying equivalence for all eight cases.



Algorithm 1 (Boros and Hammer 2001)

Input: c € Chn,

Output: ¢’ € Cpo

M:=1+23;c0,. 0y lcil

m:=n

cm:=c

while there exists a J C {1,...,n} such that |J| > 2 and ¢} # 0
Choose j, k € J such that j # k

m+1 = cm
m+1 . m+1
5, kf\ = Cliky + M
{Jin-&-l} 2
{’“ﬁ“} —oM
m —
Clmi1y 3M
for all {j,k} CJ C{1,...,n} such that cm+1 #0
m—+41 . m-‘rl
€y —{j,k}u{m~+1} ‘= €/
cJ,+1 =0

m:=m+1
@ =@™



Theorem 1
» Algorithm 1 terminates in polynomial time in size(c).
» size(c’) is polynomially bounded by size(c).

» The multi-linear quadratic form ¢’ is such that Vi € R™:

% € argmin fc(x)
xze{0,1}"

= e {07 1}’m <§:l{1 n} T i{l,”.,n} NE e argmin fc’(w/)> 0 (10)
e z'€{0,1}™m



Proof.
» The algorithm replaces the occurrence of x;xy by 1 and adds the form
M(zjx) — 22jTm+41 — 2C5Tm41 + 3Tm+1)-
> If Tm4+1 = TjTk,

FP @, mmg) = f (@1, o) £ max (@) < MJ/2
z/€{0,1}m

> If zy1 # Tz,
F N @, Bng1) > M2
(by Lemma 2 and by definition of M).
» For every iteration m,

(I C {1}l > 2AEF £ 0} < [{J € {1, n}lJ] > 2 A ¢ # 0}

which proves the complexity claims.



Summary
» Every PBF has a unique multi-linear polynomial form.
» PBO is polynomially reducible to QPBO.



Definition 5
For anymn € N and any d € {0,...,n}, let

K= {(K" KKK C{1,...,n} AK' N K® =0 A K+ |K°| = d}

d
+ +
Jnd A U K’nm
m=0

Cho={c:Jt, >R |VjieJI\{®,0)}: 0<c;}

n

and call any c € C:er an n-variate posiform of degree at most d.

Example. Forn =d =2,

Jh= {00}
u{({1},0), 0.{1}), ({2},0), 0, {2}) }
u{ {1,2}0), {1342}, ({2}, {1}, @,{1,2}) }



Definition 6
Foranyn €N, any d € {0,...,n} and any c € C:d, fe :{0,1}"™ — R such that

Vze{0,1}"  fe(@):= > enyo [[ 2 [ -2 (11)
(1, 7%egt, ieJt e
is called the PBF defined by c.
Example. For any c € Oy, fo: {0,1}% — R is such that Vz € {0,1}2:
f@)="cpo
+cqiypr1 +epay (1 — 1) + cpa1p@2 + cppay (1 — 22)
+c(1,23071®2 + c1y{23®1(1 — @2) + (2313 (1 — @1)22
+ecppr,2y (1 —21)(1 —z2) .



Definition 7
For any n € N and any f : {0,1}" — R, the posiform defined by

Ve e {0,1}": Ki:={je{l,...,n}z; =1}
Kp:={je{l,...,n}|z; =0}

and

J={0.0nyu |J {&LKH}

ze{0,1}™
and ¢ : J — R such that
cgp = min_ f(x)
Ve € {0,1}"  cxipo = f(x) —cpo

is called min-term posiform of f.



Lemma 3
For any n € N and any f : {0,1}"™ — R, the min-term posiform c of f holds f. = f.

Corollary 1
For anyn € N and any f : {0,1}™ — R, there exists a posiform ¢ € Cyty such that

fe=1Ff.



Proof of Lemma 3.
» Letn € Nand f:{0,1}" — R. Moreover, let ¢: J — R the min-term posiform
of f.
» cis a posiform (by definition).
» Let g:{0,1}" — R be the PBF defined by this posiform.
» Then, for any = € {0,1}7,
(74, 9% € {(0,0), (K5, KD} € J

are the only elements of J for which
0# [[= I a-2h=1.
jeJt  j'eJo
» Thus,
vz € {0,1}" g(x) = cgp + CK1KD
= cpp + f(x) — cpp (by definition of c)
=f(z) .



Note. Unlike multi-linear polynomial forms, posiforms of PBFs need not be unique,
eg., x1 =xi1x2 + 21(1 — z2).

Definition 8
Foranyn €N, any f:{0,1}" — R and any d € {0,...,n}, let

ctif)={cect 1 fo=1} . (12)

Note. For any n € N and any f : {0,1}" — R, C;I,,(f) contains at least the min-term
posiform of f.



Lemma 4

VneN Vf:{0,1}" =R Vee ClL (f) Vzec{0,1}" cyy < f(z) .



Proof.
» By definition, we have, for all z € {0,1}7,

d
f@)y=>" > exigo [z J] =)

m=0 (K1, K% eK,],, JEK!  j'eKO
d
=cppt+ Y > oexiwo [[ 2 [ -2,
m=1 (gl KOYeKt, jEK!  j'eKO

and all coefficients cg1 o in the second sum are non-negative.
» Therefore, the second sum is non-negative.
» Thus,

vz € {0,1}"  f(z) > cpp -



Definition 9

For any posiform ¢ : J — R, a pair (S,y) such that S C {1,...,n} andy: S — {0,1}

is called a contractor of c iff
V(I g% e J JtNnsS=0 A J°NnS=0)
v(EFjieJins y;=0)
v(Eied®ns y;=1) .

(13)



Lemma 5

For any n € N, any f : {0,1}™ — R, any posiform ¢ € C%,(f), any contractor (S, y)
of candtg,, : {0,1}"™ — {0,1}"™ such that

Ve € {0,1)" Vi€ {L..m} (s ()= {j EE
holds
vz € {0,1}"  f(tsy(x)) < f(z) . (15)
Corollary 2 (weak persistency)
2 € argmin f(z) = ts,(f) € argmin f(x) (16)

zef{0,1}7 ze{0,1}n



Proof of Lemma 5.

> Let JS = {(J1,J0) €

» By definition,

vz € {0, 1)

» Furthermore,

vz € {0,1}"

Jha 1 J'NS=JNS =0} and JS :=J — JS.

fla) = S engo [T [T -2

(J1,J%egs  jeJt /€O

=:f5()

+ ZCJIJOHIJH ].—CC

(J1,70)egS jeJt j'eJo

=:f5(x)

(by definition)
(because (0,0) ¢ J%)
Fo(ts y (@) = 5 () (by definition)

sy

o =
IN
~ o
195
=
B
&



Summary
» Every PBF has a posiform
» The posiform of a PBF need not be unique

» For every PBF f and every posiform c of f

P cyp is a lower bound on the minimum of f
P weak persistency holds at any contractor of ¢



For any n € N, consider n-variate quadratic forms:

» any multi-linear polynomial form c € Cy,2 and f. : {0,1}2 = R, i.e., for all
z € {0,1}™,

fel@)=co+ D ezt > {5k} Tk
je{l,...,n} {j7k}6({1,..2.,77,})

> any posiform ¢/ € C}f, and f.: {0,1}2 = R, i.e., for all z € {0,1}",
fh@ =ch+ D (C'{j}w%‘ + (- "”j))
je{t,n}

+ >, (¢t ky0T5@ + €y pry T (1 — 2k)

+ (L= 25) + ey (1 —a5) (1 — @)



Lemma 6
For any n € N, any QPBF f :{0,1}"* — R, the ¢ € Cp2 such that f. = f and any
¢ € CY,(f) holds

o=+t ot D Cum
F=i {jyk}e((l,..z”n})
Vie{l..nd egy=cpo—chnt 2 (o — )

ke{l,...,n}—{5}

. {17 ooog TL}
vikbe (U0 et = e + b — iy — oo



Proof.
» Expansion of the posiform ¢’ yields a quadratic multi-linear polynomial form.

» Comparison with c yields the conditions stated in the Lemma.



Definition 10 (Complementation)
For any n € N and any QPBF f : {0,1}" — R,

/
rf = max C(M)
cect,(f)

is called the floor dual of f.

(17)



Lemma 7

For any n € N and any QPBF f : {0,1}" — R, the floor dual can be computed in
polynomial time.



Proof. For the multi-linear polynomial form ¢ € Cpa such that fo = f, rf is the
solution of the linear programming problem below (by Lemma 6).

n
/ /
max o~ ch{j} - Z Co {4k}
j=1

C/:J:,}*}R

subject to  Vj € {1,...,n} cg; :c/{j}w—c'@{j}—l- Z (c/{j}{k} _C:A{j,k})
ke{1,..., n}—{j}

. {1,...,n}
vkke (U0 et = o + b — rin — o
vJ €T —{@,0} 0<d) .



Can the floor dual be computed more efficiently than by an algorithm for general LPs?



Definition 11

For any n € N and any c € CTJ{Q, the network N = (V, E, s,t,w) of ¢ contains the
nodes V. ={s,t,1,1,...,n,n} and the weighted edges

for any c(;30 > 0 sJ,Jt WG = Wit = 50(530
for any cyr;3 > 0 Wsj = Wiy 2= %CV){J’}
for any c(; ;19 > 0 ik, kj Wik += Wgj = %C{j,k}@)
for any cgiyqry >0 ik, kj Wy = W5 = %C{j}{k}

1
for any cp(; 3 >0 Wik = Wi = 3C9{j,k}




