
1/19

Computer Vision I

Jannik Irmai, Jannik Presberger, Bjoern Andres

Machine Learning for Computer Vision
TU Dresden

https://mlcv.cs.tu-dresden.de/courses/24-winter/cv1/

Winter Term 2024/2025

https://mlcv.cs.tu-dresden.de/courses/24-winter/cv1/

2/19

Excursus: Maximum st-Flow and Minimum st-Cut

▶ Maximum st-Flow Problem

▶ Residual networks and augmenting paths

▶ Minimum st-Cut Problem

▶ Maximum st-Flow/Minimum st-Cut Theorem

▶ Ford-Fulkerson-Algorithm

3/19

For any directed graph (V,E), any U ⊆ V and any W ⊆ V let

UW := {uv ∈ E | u ∈ U ∧ w ∈ W} .

v1
v2

v3

v4
v5v6

v7

v8

U = {v1, v4, v7} W = {v2, v3, v8} UW = {v1v2, v7v8}

4/19

Definition 1. For any directed graph (V,E) and any f ∈ NE
0 , the maps

φ+, φ−, φ : 2V → Z such that

∀U ∈ 2V φ+
U =

∑
uv∈UUc

fuv (1)

φ−
U =

∑
vu∈UcU

fvu (2)

φU = φ+
U − φ−

U (3)

are called the outflux, influx and flux in (V,E) wrt. f .

v1

v2

v3

v4
v5v6

v7

v8

2

5

9
3

7
U = {v1, v4, v8}
φ+

U = 3 + 2
φ−

U = 7 + 5
φU = −7

5/19

For any u ∈ V ,

φ+
u := φ+

{u}

φ−
u := φ−

{u}

φu := φ{u}

are called the outflux, influx and flux of u in (V,E) wrt. f .

v1

v2

v3

v4
v5v6

v7

v8

2

5

9
3

7

φ+
v4 = 9

φ−
v4 = 5

φv4 = 4

6/19

Lemma 1. For any directed graph (V,E), any f ∈ NE
0 and any U ⊆ V

φU =
∑
u∈U

φu . (4)

v1

v2

v3

v4
v5v6

v7

v8

2

5

9
3

7

7/19

Proof.

φU =
∑

uv∈UUc

fuv −
∑

vu∈UcU

fvu

=

(∑
uv∈UV

fuv −
∑

uu′∈UU

fuu′

)
−

(∑
vu∈V U

fvu −
∑

u′u∈UU

fuu′

)
=

∑
uv∈UV

fuv −
∑

vu∈V U

fvu

=
∑
u∈U

 ∑
vw∈{u}{u}c

fvw −
∑

vw∈{u}c{u}

fvw


=
∑
u∈U

φu .

□

8/19

Definition 2. A 5-tuple N = (V,E, s, t, c) is called a network iff (V,E) is a
directed graph and s ∈ V and t ∈ V and s ̸= t and c ∈ NE .

The nodes s and t are called the source and the sink of N , respectively.

For any edge e ∈ E, ce is called the capacity of e in N .

Definition 3. A map f ∈ NE
0 is called an st-preflow in a network

N = (V,E, s, t, c) iff

∀e ∈ E 0 ≤ fe ≤ ce (5)

∀v ∈ V − {s} φv ≤ 0 . (6)

An st-preflow f in N is called an st-flow in N iff, in addition,

∀v ∈ V − {s, t} φv = 0 . (7)

9/19

Definition 4. The instance of the Maximum st-Flow Problem wrt. a network
N = (V,E, s, t, c) is to

max
f∈NE

0

∑
sv∈E

fsv −
∑
vs∈E

fvs (8)

subject to ∀e ∈ E 0 ≤ fe ≤ ce (9)

∀v ∈ V − {s, t}
∑

vw∈E

fvw =
∑
uv∈E

fuv . (10)

Note: ∑
sv∈E

fsv −
∑
vs∈E

fvs = φs

10/19

Definition 5. For any network N = (V,E, s, t, c) and any st-preflow f in N ,
the residual network of N wrt. f is the network N ′ = (V,E′, s, t, c′) such that

E′ = E+ ∪ E−

E+ = {vw ∈ E | cvw − fvw > 0}

E− = {vw ∈ V 2 | wv ∈ E ∧ fwv > 0}

and

∀vw ∈ E′ c′vw =

{
cvw − fvw if vw ∈ E+

fwv if vw ∈ E− . (11)

For any e ∈ E′, c′e is called the residual capacity of e wrt. f .

Any path in (V,E′) from s to t (if such a path exists) is called an augmenting
path of f .

11/19

Lemma 2. Let N = (V,E, s, t, c) be a network and f an st-preflow in N .
Assume that an n ∈ N and an augmenting path p = (v1w1, . . . , vnwn) of f
exist.

Let

δ := min
vw∈p([n])

c′vw . (12)

Then, f ′ ∈ NE
0 such that

∀vw ∈ E′ : f ′
vw =


fvw + δ if vw ∈ p([n]) ∧ vw ∈ E

fvw − δ if vw ∈ p([n]) ∧ wv ∈ E

fvw otherwise

(13)

is an st-preflow in N wrt. which

φ′
s = φs + δ . (14)

Moreover, if f is an st-flow in N , so is f ′.

12/19

Definition 6. Let (V,E) be a directed graph. Let s ∈ V and t ∈ V and s ̸= t.

▶ X ⊆ V is called an st-cutset of (V,E) iff s ∈ X and t /∈ X.

▶ Y ⊆ E is called an st-cut of (V,E) iff there exists an st-cutset X such
that Y = {vw ∈ E|v ∈ X ∧ w /∈ X}.

t

v1 v2

s

t

v1 v2

s

t

v1 v2

s

t

v1 v2

s

13/19

Definition 7. The instance of the Minimum st-Cut Problem wrt. a network
N = (V,E, s, t, c) is to

min
x∈{0,1}V

∑
vw∈E

xv(1− xw)cvw (15)

subject to xs = 1 (16)

xt = 0 (17)

Note: With X := {v ∈ V |xv = 1}, we have∑
vw∈E

xv(1− xw)cvw =
∑

vw∈XXc

cvw

14/19

Lemma 3. For every network N = (V,E, s, t, c), every st-flow f in N , and
every st-cutset X ⊆ V ,

φs ≤
∑

vw∈XXc

cvw . (18)

Proof.

φs =
∑
v∈S

φv by (7) and t /∈ S

= φS by Lemma 1

≤ φ+
S by (2), (3) and 0 ≤ f

=
∑

vw∈SSc

fvw by (1)

≤
∑

vw∈SSc

cvw by (5).

□

Lemma 3 does not hold analogously for every st-preflow, because, wrt. an
st-preflow, φS need not be an upper bound on φs.

15/19

Theorem 1. For any network N = (V,E, s, t, c), any s, t ∈ V such that s ̸= t,
and any st-flow f in N , the following three conditions are equivalent

1. There exists an st-cut whose capacity is equal to φs.
2. The st-flow f is optimal, i.e., a solution of (8)–(10).
3. No augmenting path of f exists.

16/19

Proof.

(1) implies (2) by virtue of Lemma 3.

(2) implies (3) by virtue of Lemma 2.

We prove that (3) implies (1):

▶ Let f be an st-flow such that no augmenting path exists.

▶ Let S be the set of all nodes v ∈ V such that there exists a path in the
residual network wrt. f from s to v. Let S also include s itself.

▶ Then, t /∈ S (otherwise, the path from s to t in the residual network would
be an augmenting path).

▶ Moreover, . . .

17/19

▶ Moreover,

φs =
∑
v∈S

φv by (7) and t /∈ S

= φS by Lemma 1

=
∑

vw∈SSc

fvw −
∑

vw∈ScS

fvw by definition of φS

=
∑

vw∈SSc

cvw by the arguments below.

▶ For any vw ∈ SSc, we have fvw = cvw (otherwise, the contradiction
w ∈ S follows by construction of S and by definition of the residual
network).

▶ For any vw ∈ ScS, we have fvw = 0 (otherwise, the contradiction v ∈ S
follows by construction of S and by definition of the residual network).

□

18/19

Algorithm 1. (Ford and Fulkerson, 1956)

Input: Network N = (V,E, s, t, c)
Output: f : E → N0

for all vw ∈ E
fvw := 0

while ∃n ∈ N ∃augmenting path p = (v1w1, . . . , vnwn) of f
δ := min

vw∈p([n])
c′vw

for all vw ∈ E

fvw :=


fvw + δ if vw ∈ P ∧ vw ∈ E

fvw − δ if vw ∈ P ∧ wv ∈ E

fvw otherwise

19/19

Theorem 2. Algorithm 1 terminates. The output f is a maximum st-flow in N .

Proof. Termination.

▶ For every augmenting path processed, φs increases by at least 1.

▶ Moreover,

φs ≤
∑

vw∈{s}{s}c
cvw (by Lemma 3)

▶ Therefore, only finitely many augmenting paths are processed.

▶ Thus, the algorithm terminates.

Optimality:

▶ Throughout the execution, f is an st-flow in N .

▶ When the algorithm terminates, no augmenting path exists.

▶ Thus, f is a maximum st-flow in N (by Theorem 1).

