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Excursus: Maximum st-Flow and Minimum st-Cut

» Maximum st-Flow Problem
Residual networks and augmenting paths
Minimum st-Cut Problem

Maximum st-Flow/Minimum st-Cut Theorem

vvyyvyy

Ford-Fulkerson-Algorithm
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For any directed graph (V, E), any U CV and any W C V let

UW:={uw eFE|ueUAweW} .

U ={vi,va,v7} W ={v2,v3,u8} UW = {v1v2,v7vs8}
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Definition 1. For any directed graph (V, E) and any f € N{, the maps
0T 07, p:2Y — 7Z such that

vue2” ofi= Y fu (1)
uveUU®

Yy = vau (2)
vuelUcU

YU =9 — vy (3)

are called the outflux, influx and flux in (V, E) wrt. f.

U8
7
vr o/(i vs U = {v1,v4,v8}
5

vs 0 o =342
vc 8, 1).5 wy=T+5
N e wo=T
2
(%1
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For any u € V,

Pu =Pl
Pu =Py
Pu = P{u}

are called the outflux, influx and flux of w in (V, E) wrt. f.

Vs
7
V7 0/._ VU3 <,0+ =9
= v4
vipe #uu =5
Vs @, 9/> .5 Pog =
‘x/v. V2
2
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Lemma 1. For any directed graph (V, E), any f € NY and any U C V

U= ¢u .

uwelU

(%

7 o
V7 / V3
V4 ‘5/.

Ve (/;1;5

3 ® U2
2

(4)
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Proof.

YU = qu'u - vau

uveUU°c vuelUcU

< > fuw — Zm) - ( > fou — quuf)

uwveUV uwu’€eUU vueVU uw/'uweUU
= g fuv - § fvu
uveUV vueVUu

—2( > fow — Efw>

uelU \vwe{u}{u}c vwe{u}{u}

=3

uelU
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Definition 2. A 5-tuple N = (V, E, s,t,¢) is called a network iff (V, E) is a
directed graph and s € V andt € V and s # ¢ and ¢ € N¥.

The nodes s and ¢ are called the source and the sink of N, respectively.

For any edge e € F, c. is called the capacity of e in V.

Definition 3. A map f € N[ is called an st-preflow in a network
N = (V,E, s,t,c) iff

Vec E 0< fo<ce (5)
YoeV —{s} ¢, <0. (6)

An st-preflow f in N is called an st-flow in N iff, in addition,

Yo eV —{s,t} ¢,=0. (M
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Definition 4. The instance of the Maximum st-Flow Problem wrt. a network

N = (V,E, s,t,c) is to

max Z fsv - Z fvs

E
feNg sveEE

subject to Ve € F

YveV —

Note:

> foo =

svEE

vs€EE
0< fe < ce

{S7t} vaw: quv .

vweE uwveE

Z fvs = Ps

vs€EE

(8)

(9)
(10)
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Definition 5. For any network N = (V, E, s,t,¢) and any st-preflow f in N,
the residual network of N wrt. f is the network N’ = (V, E’ s t,c’) such that

E' =ETUE”
E" ={vw € E | cyw — fow > 0}
E-={vweV?®|wveEA fu, >0}

i - i f E+
Yow € E’ cﬁjw: Cow = fou I v e _
Sfwo if vw e £

For any e € E', ¢, is called the residual capacity of e wrt. f.

(11)

Any path in (V, E’) from s to t (if such a path exists) is called an augmenting

path of f.
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Lemma 2. Let N = (V, E, s,t,¢) be a network and f an st-preflow in N.

Assume that an n € N and an augmenting path p = (viw1, ..., v,wy) of f
exist.
Let
§:= min Chy - (12)
vwep([n])

Then, f' € NF such that

fow+ 6 ifow € p(n]) ANvw € E
Vow € E' . fow =X fow—0 ifvw e p([n]) Awv € E (13)
fow otherwise

is an st-preflow in N wrt. which

Pe=s+6 . (14)

Moreover, if f is an st-flow in N, so is f’.
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Definition 6. Let (V, E) be a directed graph. Let s€ V andt € V and s # ¢.

» X CV is called an st-cutset of (V,E) iff s€ X and t ¢ X.

> Y C E is called an st-cut of (V, E) iff there exists an st-cutset X such
that Y = {fvw e Elve X Aw ¢ X}.

s s s s
vl/T{\‘/vg vlé/.vg vlévg v1@02
o . o .

t t t t
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Definition 7. The instance of the Minimum st-Cut Problem wrt. a network

N = (V,E,s,t,c) is to
min Z Zo(1 — Zw)Cow

J')E{O,l}v vweE

subjectto zs =1
Ty = 0

Note: With X := {v € V|z, = 1}, we have

§ xv(l - xw)cvw = g Cyw
vweE vweX Xe

(15)

(16)
(17)
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Lemma 3. For every network N = (V, E, s,t,c), every st-flow f in N, and
every st-cutset X C V,

s < D Cow - (18)

vweX X
Proof.
%ZZ@U by (7) and t ¢ S
veS
= psg by Lemma 1
< by (2), (3) and 0 < f
= Y fow by (1)
vweSSe
< Z Cow by (5).
vweSSe

Lemma 3 does not hold analogously for every st-preflow, because, wrt. an
st-preflow, ps need not be an upper bound on ;.
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Theorem 1. For any network N = (V, E,s,t,c), any s,t € V such that s # ¢,
and any st-flow f in N, the following three conditions are equivalent

1. There exists an st-cut whose capacity is equal to ¢s.
2. The st-flow f is optimal, i.e., a solution of (8)—(10).
3. No augmenting path of f exists.
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Proof.
(1) implies (2) by virtue of Lemma 3.
(2) implies (3) by virtue of Lemma 2.
We prove that (3) implies (1):
» Let f be an st-flow such that no augmenting path exists.

» Let S be the set of all nodes v € V such that there exists a path in the
residual network wrt. f from s to v. Let S also include s itself.

» Then, t ¢ S (otherwise, the path from s to ¢ in the residual network would
be an augmenting path).

» Moreover, ...
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» Moreover,

WSIZSOU by (7) and t ¢ S
veS
= s by Lemma 1
= > fow = Y fow by definition of s
vweSSe vweSS
= Z Cow by the arguments below.
vweSSe

» For any vw € 5S¢, we have fu, = cvw (otherwise, the contradiction
w € S follows by construction of S and by definition of the residual

network).
» For any vw € S¢S, we have f,,, = 0 (otherwise, the contradiction v € S
follows by construction of S and by definition of the residual network).

O
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Algorithm 1. (Ford and Fulkerson, 1956)

Input: Network N = (V, E, s,t,c)
Output: f: F — Np
for all vw € E
fow =0
while 3n € N Jaugmenting path p = (viws,...,vwy) of f
§:= min c,
vwep([n])
for all vw € E

f1/w+6 if’U’LUEP/\’U’LUEE
fow =9¢ fow —06 fowe PAwveEE
fuw otherwise
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Theorem 2. Algorithm 1 terminates. The output f is a maximum st-flow in V.

Proof. Termination.

» For every augmenting path processed, y; increases by at least 1.

» Moreover,

ps < Z Cow (by Lemma 3)
vwe{s}{s}¢

» Therefore, only finitely many augmenting paths are processed.

» Thus, the algorithm terminates.
Optimality:

» Throughout the execution, f is an st-flow in N.
» When the algorithm terminates, no augmenting path exists.

» Thus, f is a maximum st-flow in N (by Theorem 1).
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