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Machine Learning I

https://mlcv.cs.tu-dresden.de/courses/24-winter/ml1/

▶ Course consisting of
▶ lectures in TRE/PHYS/E on Fridays, 9:20–10:50
▶ exercise groups starting October 21st

In VMB/0302/U on Tuesdays, 16:40–18:10
In APB/E001/U on Thursdays, 16:40–18:10
In APB/E001/U on Fridays, 14:50–16:20
In APB/E001/U on Fridays, 16:40–18:10
Online on Wednesdays, 9:20–10:50

▶ self-study
▶ final examination (covering lectures and exercises).

▶ Registration:
▶ All participating students need to register through OPAL
▶ All participating students enrolled in the study program Computational

Modeling and Simulation need to register additionally via CampusNet.

▶ No recordings/reproductions of the lectures or exercises!

https://mlcv.cs.tu-dresden.de/courses/24-winter/ml1/
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Machine Learning I

Machine Learning is a is a field within computer science focused on the
research and engineering of mathematical models and algorithms for analyzing,
understanding and interpreting data, and for deciding and acting based on data.

The introductory course Machine Learning I focuses on machine learning
problems and algorithms:

Supervised learning Unsupervised learning Structured learning
– Decision trees – Partitioning – Graphical models
– Linear functions – Clustering
– Composite functions – Ordering
(i.e. Deep Learning)

– Embedding
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Machine Learning I

Prerequisites:
▶ Mathematics

▶ Linear algebra
▶ Multivariate calculus (basics)
▶ Probability theory (basics)

▶ Computer Science
▶ Algorithms and data structures (basics)
▶ Theoretical computer science (basics of complexity theory)
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Machine Learning I

▶ Textbooks:
▶ Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press

2012
▶ Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, Jonathan

Taylor. An Introduction to Statistical Learning. Springer 2023
▶ Christopher M. Bishop, Hugh Bishop. Deep Learning: Foundations and

Concepts. Springer 2024
▶ Marc Peter Deisenroth. Mathematics for Machine Learning. Cambridge

University Press 2020

▶ Leading scholarly journal:
▶ Journal of Machine Learning Research (JMLR)
▶ Transactions on Pattern Analysis and Machine Intelligence (TPAMI)

▶ Leading academic conferences:
▶ International Conference on Machine Learning (ICML)
▶ Neural Information Processing Systems (NeurIPS)
▶ International Conference on Learning Representations (ICLR)
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Machine Learning

Machine Learning

▶ poses challenging problems
▶ combines insights and methods from

▶ mathematics (esp. optimization, probability theory, statistics)
▶ computer science (esp. algorithms, complexity, software engineering)

▶ provides an opportunity for applying analytical and engineering skills

▶ has impact on applications (scientific, medical, robotic, consumer)

▶ offers excellent career opportunities

▶ grows dynamically
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Machine Learning I

https://mlcv.cs.tu-dresden.de/teaching.html

Related courses we are offering this term:

▶ Lecture Computer Vision I

▶ Research Project Machine Learning
INF-MA-PR and INF-PM-FPG

▶ Research Project Machine Learning (CMS)
CMS-PRO

▶ Research Project Applied Machine Learning
INF-MA-PR and INF-PM-FPA

https://mlcv.cs.tu-dresden.de/teaching.html
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Machine Learning I

Notation:

▶ For any m ∈ N, m = {0, . . . ,m− 1}.
▶ For any finite set A, let |A| denote the number of elements of A.

▶ For any set A, let 2A denote the power set of A.

▶ For any set A and any m ∈ N, let
(
A
m

)
denote the set of all m-elementary

subsets of A, that is,
(
A
m

)
= {B ∈ 2A : |B| = m}.

▶ For any sets A,B, let BA denote the set of all maps from A to B.

▶ For any f ∈ BA, any a ∈ A and any b ∈ B, we may write b = f(a) or
b = fa instead of (a, b) ∈ f

▶ Let ⟨·, ·⟩ denote the standard inner product, and let ∥ · ∥ denote the l2-norm.

▶ Given any set J and, for any j ∈ J , a set Sj , we denote by
∏

j∈J Sj the
Cartesian product of the family {Sj}j∈J , i.e.

∏
j∈J

Sj =

{
f : J →

⋃
j∈J

Sj

∣∣∣∣∣∀j ∈ J : f(j) ∈ Sj

}
(1)


