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Logistic regression

Contents. This part of the course is about the supervised learning of linear
functions, more specifically, about logistic regression.

▶ We introduce the problem by defining labeled data, a family of functions
and a probability measure whose maximization motivates a regularizer and a
loss function.

▶ We show: This supervised learning problem is convex. It can be solved, e.g.,
by the steepest descent algorithm.
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Logistic regression

We consider labeled data with real features. More specifically, we consider some
finite, non-empty set V , called the set of features, and labeled data
T = (S,X, x, y) such that X = RV . Hence:

x : S → RV (1)

y : S → {0, 1} (2)

Example.
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Logistic regression

We consider linear functions. More specifically, we consider Θ = RV and
f : Θ → RX such that

∀θ ∈ Θ ∀x̂ ∈ X : fθ(x̂) = ⟨θ, x̂⟩ =
∑
v∈V

θv x̂v (3)

Example.
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Logistic regression

We introduce a probabilistic model:

▶ For any sample s ∈ S, let Xs be a random variable whose value is a vector
xs ∈ RV , the feature vector of s

▶ For any sample s ∈ S, let Ys be a random variable whose value is a binary
number ys ∈ {0, 1}, the label of s

▶ For any v ∈ V , let Θv be a random variable whose value is a real number
θv ∈ R, a parameter of the linear function we seek to learn

We assume that the joint probability factorizes according to:

P (X,Y,Θ) =
∏
s∈S

(P (Ys | Xs,Θ)P (Xs))
∏
v∈V

P (Θv) (4)

Xs

YsΘv

v ∈ V s ∈ S
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Logistic regression

We attempt to learn parameters by maximizing the conditional probability

P (Θ | X,Y ) =
P (X,Y,Θ)

P (X,Y )

=
P (Y | X,Θ)P (X)P (Θ)

P (X,Y )

∝ P (Y | X,Θ)P (Θ)

=
∏
s∈S

P (Ys | Xs,Θ)
∏
v∈V

P (Θv) .

We attempt to infer labels by maximizing the conditional probability

P (Y | X,Θ) =
∏
s∈S

P (Ys | Xs,Θ) .
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Logistic regression

▶ Sigmoid distribution

∀s ∈ S : pYs|Xs,Θ(1) =
1

1 + 2−fθ(xs)
(5)
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Logistic regression

▶ Normal distribution with σ ∈ R+:

∀v ∈ V : pΘv (θv) =
1

σ
√
2π

e−θ2v/2σ
2

(5)
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Logistic regression

Lemma. Estimating maximally probable parameters θ, given attributes x and
labels y, i.e.,

argmax
θ∈Rm

pΘ|X,Y (θ, x, y)

is equivalent ot the supervised learning problem

min
θ∈Θ

λR(θ) +
∑
s∈S

L(fθ(xs), ys) (6)

with L, R and λ such that

∀r ∈ R ∀ŷ ∈ {0, 1} : L(r, ŷ) = −ŷr + log (1 + 2r) (7)

∀θ ∈ Θ: R(θ) = ∥θ∥22 (8)

λ =
log e

2σ2
. (9)

It is called the l2-regularized logistic regression problem with respect to x, y
and σ.
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Logistic regression

Proof. Firstly,

argmax
θ∈Rm

pΘ|X,Y (θ, x, y)

= argmax
θ∈Rm

∏
s∈S

pYs|Xs,Θ(ys, xs, θ)
∏
v∈V

pΘv (θv)

= argmax
θ∈Rm

∑
s∈S

log pYs|Xs,Θ(ys, xs, θ) +
∑
v∈V

log pΘv (θv) (10)

Secondly,

log pYs|Xs,Θ(ys, xs, θ)

= ys log pYs|Xs,Θ(1, xs, θ) + (1− ys) log pYs|Xs,Θ(0, xs, θ)

= ys log
pYs|Xs,Θ(1, xs, θ)

pYs|Xs,Θ(0, xs, θ)
+ log pYs|Xs,Θ(0, xs, θ) (11)

Thus, with (5) and (4):

argmin
θ∈Rm

∑
s∈S

(
−ys⟨θ, xs⟩+ log

(
1 + 2⟨θ,xs⟩

))
+

log e

2σ2
∥θ∥22 (12)
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Logistic regression

Lemma. The objective function

φ(θ) = λR(θ) +
1

|S|
∑
s∈S

L(fθ(xs), ys) (13)

of the l2-regularized logistic regression problem is convex.

Proof. Exercise!
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Logistic regression

The l2-regularized logistic regression problem can be solved, e.g., by the steepest
descent algorithm with a tolerance parameter ϵ ∈ R+

0 :

Algorithm. Steepest descent with line search

θ := 0
repeat

d := ∇φ(θ)
η := argminη′∈R φ(θ − η′d) (line search)
θ := θ − ηd
if ∥d∥ < ϵ

return θ
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Logistic regression

Lemma: Estimating maximally probable labels y, given attributes x′ and
parameters θ, i.e.,

argmax
y∈{0,1}S

pY |X,Θ(y, x
′, θ) (14)

is equivalent to the inference problem

min
y′∈{0,1}S

∑
s∈S

L(fθ(xs), y
′
s) . (15)

It has the solution

∀s ∈ S′ : ys =

{
1 if fθ(x

′
s) > 0

0 otherwise
. (16)
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Logistic regression

Proof. Firstly,

argmax
y∈{0,1}S′

pY |X,Θ(y, x
′, θ)

= argmax
y∈{0,1}S′

∏
s∈S′

pYs|Xs,Θ(ys, x
′
s, θ)

= argmax
y∈{0,1}S′

∑
s∈S′

log pYs|Xs,Θ(ys, x
′
s, θ)

= argmax
y∈{0,1}S′

∑
s∈S′

(
ys log

pYs|Xs,Θ(1, x
′
s, θ)

pYs|Xs,Θ(0, x
′
s, θ)

+ log pYs|Xs,Θ(0, x
′
s, θ)

)
= argmin

y∈{0,1}S′

∑
s∈S′

(
−ysfθ(x

′
s) + log

(
1 + 2fθ(x

′
s)
))

= argmin
y∈{0,1}S′

∑
s∈S′

L(fθ(x
′
s), ys) .

Secondly,

min
y∈{0,1}S′

∑
s∈S′

(
−ysfθ(x

′
s) + log

(
1 + 2fθ(x

′
s)
))

=
∑
s∈S′

max
ys∈{0,1}

ysfθ(x
′
s) .
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Logistic regression

Summary.

▶ The l2-regularized logistic regression problem is a supervised learning
problem wrt. the family of linear functions.

▶ It can be derived from a statistical model with the sigmoid distribution as
the likelihood as the normal distribution as the prior.

▶ It is a convex optimization problem that can be solved, e.g., by the steepest
descent algorithm.


