
1/15

Machine Learning II

Jannik Irmai, Jannik Presberger, David Stein, Bjoern Andres

Machine Learning for Computer Vision
TU Dresden

https://mlcv.cs.tu-dresden.de/courses/25-summer/ml2/

Summer Term 2025

https://mlcv.cs.tu-dresden.de/courses/25-summer/ml2/


2/15

Contents.

▶ In this part of the course, we discuss a technique for solving combinatorial
optimization problems partially and efficiently: the construction of
improving maps.

▶ We concentrate on three NP-hard problems that arise as inference problems
in the field of machine learning: the clique partition problem for clustering,
the linear ordering problem, and the graphical model inference problem.



3/15

Partial optimality – Mathematical foundations

Definition 1. Let Y ̸= ∅ finite, φ : Y → R and σ : Y → Y . We call σ
improving for the problem min{φ(y) | y ∈ Y } iff φ ◦ σ ≤ φ.

Lemma 1. Let Y ̸= ∅ finite and φ : Y → R. Let σ : Y → Y improving for the
problem min{φ(y) | y ∈ Y }. If Q ⊆ Y and σ(Y ) ⊆ Q, there exists a solution
y∗ such that y∗ ∈ Q.

Proof. A solution y′ exists because Y is non-empty and finite. y∗ := σ(y′) is
also a solution because σ is improving. Moreover, y∗ ∈ Q because σ(Y ) ⊆ Q. □



4/15

Partial optimality – Mathematical foundations

Corollary 1. Let S ̸= ∅ finite, Y ⊆ {0, 1}S and φ : Y → R. Let s ∈ S and
q ∈ {0, 1}. If σ : Y → Y is improving for the problem min{φ(y) | y ∈ Y } such
that ∀y ∈ Y : σ(y)s = q, there exists a solution y∗ such that y∗

s = q.

Remark 1. If we can construct such an improving map, we can fix the variable
y∗
s to q without compromising optimality.



5/15

Partial optimality – Clustering

Definition 2. For any A ̸= ∅ finite, any c :
(
A
2

)
→ R,

YA :=
{
y :

(
A
2

)
→ {0, 1}

∣∣∣ ∀a ∈ A ∀b ∈ A \ {a} ∀c ∈ A \ {a, b} :

yab + ybc − 1 ≤ yac
}

(1)

and φc : YA → R : y 7→ ⟨c, y⟩,

min{φc(y) | y ∈ YA} (2)

is called the instance of the (clique) partition problem wrt. A and c, which we
abbreviate as CPP(A, c).

Example 1.

−3

−1 2



6/15

Partial optimality – Clustering

For any set A and any U ⊆ A, we write

∂U :=
{
{u, a} ∈

(
A
2

) ∣∣ u ∈ U ∧ a /∈ U
}

. (3)



7/15

Partial optimality – Clustering

Definition 3. Let A ̸= ∅ finite and U ⊆ A.

▶ The elementary cut map wrt. U is the σU : YA → YA such that
∀y ∈ YA ∀{a, b} ∈

(
A
2

)
:

σU (y)ab =

{
0 if {a, b} ∈ ∂U

yab otherwise
. (4)

▶ The elementary join map wrt. U is the σ′
U : YA → YA such that

∀y ∈ YA ∀{a, b} ∈
(
A
2

)
:

σ′
U (y)ab =



1 if {a, b} ∈
(
U
2

)
1 if a ∈ U ∧ ∃u ∈ U : yub = 1

1 if b ∈ U ∧ ∃u ∈ U : yua = 1

1 if (∃u ∈ U : yua = 1) ∧
(∃u ∈ U : yub = 1)

yab otherwise

. (5)

Remark 2. σU is well-defined, i.e. σU (YA) ⊆ YA. σ
′
U is well-defined. σ′

U ◦ σU is
well-defined.



8/15

Partial optimality – Clustering

To begin with, we establish a trivial partial optimality condition for the CPP:

Lemma 2. Let A ̸= ∅ finite and c :
(
A
2

)
→ R. If there exists U ⊆ A such that

∀{a, b} ∈ ∂U : 0 ≤ cab , (6)

there exists a solution y∗ to CPP(A, c) such that

∀{a, b} ∈ ∂U : y∗
ab = 0 . (7)



9/15

Partial optimality – Clustering

Proof. For any y ∈ YA, σU (y) satisfies (7). Moreover, σU is improving for
CPP(A, c) because for any y ∈ YA and y′ := σU (y):

φc(y
′)− φc(y) =

∑
{a,b}∈(A2)

cab y
′
ab −

∑
{a,b}∈(A2)

cab yab (8)

=
∑

{a,b}∈(A2)

cab(y
′
ab − yab) (9)

=
∑

{a,b}∈∂U

cab(0− yab) (10)

= −
∑

{a,b}∈∂U

cab yab (11)

(6)

≤ 0 . (12)

The assertion follows by Lemma 1. □



10/15

Partial optimality – Clustering

For any r ∈ R, we write

[r]+ :=

{
r if r ≥ 0

0 otherwise
(13)

[r]− :=

{
0 if r ≥ 0

−r otherwise
. (14)



11/15

Partial optimality – Clustering

Next, we establish a less trivial partial optimality condition for the CPP:

Proposition 1. Let A ̸= ∅ finite and c :
(
A
2

)
→ R. If there exist U ⊆ A and

{u, v} ∈ ∂U such that ∑
{a,b}∈∂U\{{u,v}}

[cab]− ≤ cuv , (15)

there exists a solution y∗ to CPP(A, c) such that y∗
uv = 0.



12/15

Partial optimality – Clustering

Proof. Let ξ : YA → YA such that for all y ∈ YA:

ξ(y) =

{
y if yuv = 0

σU (y) otherwise
. (16)

For any y ∈ YA and y′ := ξ(y), we have y′
uv = 0.

Moreover, ξ is improving for CPP(A, c) because for all y ∈ YA and y′ := ξ(y),
the following holds: If yab = 0 then φc(y

′)− φc(y) = φc(y)− φc(y) = 0 ≤ 0.
Otherwise:

φc(y
′)− φc(y) =

∑
{a,b}∈(A2)

cab(y
′
ab − yab) (17)

= cuv(0− 1) +
∑

{a,b}∈∂U\{{u,v}}

cab(0− yab) (18)

= −cuv −
∑

{a,b}∈∂U\{{u,v}}

cab yab (19)

≤ −cuv +
∑

{a,b}∈∂U\{{u,v}}

[cab]− (20)

(15)

≤ 0 . (21)

The assertion follows by Lemma 1. □



13/15

Partial optimality – Clustering

Next, we establish a non-trivial partial optimality condition for the CPP:

Lemma 3. Let A ̸= ∅ finite and c :
(
A
2

)
→ R. If there exist U ⊆ A such that∑

{u,a}∈∂U

[cua]− ≤ min
{s,t}∈(U2)

min
y∈YU |
yst=0

∑
{u,v}∈(U2)

(−cuv)(1− yuv) , (22)

there exists a solution y∗ to CPP(A, c) such that ∀{u, v} ∈
(
U
2

)
: y∗

uv = 1.



14/15

Partial optimality – Clustering

Proof. Let ξ : YA → YA such that for all y ∈ YA:

ξ(y) :=

{
(σ′

U ◦ σU )(y) if ∃{u, v} ∈
(
U
2

)
: yuv = 0

y otherwise
. (23)

For any y ∈ YA, y
′ := ξ(y) and all {u, v} ∈

(
U
2

)
, we have y′

uv = 1.

Moreover, ξ is improving because for all y ∈ YA and y′ := ξ(y), the following
condition holds: If ∀{u, v} ∈

(
U
2

)
: yuv = 1 then

φc(y
′)− φc(y) = φc(y)− φc(y) = 0 ≤ 0. Otherwise:

φc(y
′)− φc(y) =

∑
{u,a}∈∂U

cua(0− yua) +
∑

{u,v}∈(U2)

cuv(1− yuv) (24)

≤
∑

{u,a}∈∂U

[cua]− + max
{s,t}∈(U2)

max
y∈YU |
yst=0

∑
{u,v}∈(U2)

cuv(1− yuv)

(25)

≤
∑

{u,a}∈∂U

[cua]− − min
{s,t}∈(U2)

min
y∈YU |
yst=0

∑
{u,v}∈(U2)

(−cuv)(1− yuv)

(26)

(22)

≤ 0 . (27)

The assertion follows by Lemma 1. □



15/15

Partial optimality – Clustering

Even if set U ⊆ A is given, Condition (22) of Lemma 3 cannot be checked
efficiently: In general, the calculation of

min
{s,t}∈(U2)

min
y∈YU |
yst=0

∑
{u,v}∈(U2)

(−cuv)(1− yuv) (28)

requires solving CPPs with the additional constraint yst = 0.

However, in the special case where ∀{u, v} ∈
(
U
2

)
: cuv ≤ 0, these problems

become minimum st-cut problems that can be solved efficiently.

Hence, an idea toward applying Lemma 3 algorithmically is to work in two steps:

1. to heuristically search for a set U such that
▶ inside U , all costs are non-positive
▶ on the boundary of U , the sum of the negative costs is large.

2. to efficiently test (22) from Lemma 3 for these sets U .


