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» In this part of the course, we discuss a technique for solving combinatorial
optimization problems partially and efficiently: the construction of
improving maps.

» We concentrate on three NP-hard problems that arise as inference problems
in the field of machine learning: the clique partition problem for clustering,
the linear ordering problem, and the graphical model inference problem.
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Partial optimality — Mathematical foundations

Definition 1. Let Y # & finite, ¢: Y - Rando: Y - Y. Wecall o
improving for the problem min{p(y) |y € Y} iff poo < .

Lemma 1. Let Y # & finite and ¢: Y — R. Let 0: Y — Y improving for the
problem min{p(y) [y € Y} If Q CY and o(Y) C @, there exists a solution
y* such that y* € Q.

Proof. A solution 3’ exists because Y is non-empty and finite. y* := o (y’ )
also a solution because o is improving. Moreover, y* € @ because o(Y) C Q
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Partial optimality — Mathematical foundations

Corollary 1. Let S # & finite, Y C {0,1}° and ¢: Y - R. Let s € S and
g €{0,1}. If 0: Y — Y is improving for the problem min{y(y) | y € Y} such
that Vy € Y: o(y)s = g, there exists a solution y* such that y; = q.

Remark 1. If we can construct such an improving map, we can fix the variable
ys to ¢ without compromising optimality.
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Partial optimality — Clustering
Definition 2. For any A # & finite, any c: (g‘) - R,
va={y: (3) > {0, 1}‘VaeAVbeA\{a}VceA\{a b):
Yab + Yo — 1 < yac} (1)
and ¢c: Ya = R:y— (c,y),

min{ec(y) |y € Ya} (2)

is called the instance of the (clique) partition problem wrt. A and ¢, which we
abbreviate as CPP(A4, ¢).

Example 1.
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Partial optimality — Clustering

For any set A and any U C A, we write

BU::{{u,a}e(‘;HueU/\ag‘;U} . (3)
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Partial optimality — Clustering

Definition 3. Let A # O finite and U C A.

» The elementary cut map wrt. U is the oy : Y4 — Y4 such that
Yy € Ya V¥{a,b} € (3):

o (e = {o if {a,b} € 0U @

Yab Otherwise

» The elementary join map wrt. U is the o(;: Y4 — Ya such that
Yy € Ya V{a,b} € (5):

if {a,0} € (%)

ifacUANFueU: yup =1

fbeUNTuEU: yuo =1

if (JueU: yua =1) A
FueU:yw=1)

Yab Otherwise

T

Remark 2. oy is well-defined, i.e. oy (Ya) C Ya. oy is well-defined. of; o oy is
well-defined.
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Partial optimality — Clustering

To begin with, we establish a trivial partial optimality condition for the CPP:

Lemma 2. Let A # & finite and c: (‘;) — R. If there exists U C A such that
V{a,b} €U: 0<ca , (6)
there exists a solution y* to CPP(A, ¢) such that

V{a,b} € 0U: wyo, =0 . )

8/15



Partial optimality — Clustering

Proof. For any y € Ya, ou(y) satisfies (7). Moreover, oy is improving for

CPP(A, c) because for any y € Y4 and ' := ou(y):

@c(y/) - cpc(y) = Z Cab y;b - Z

{abye(3) {an}e(3)

= > car(Yab — Yav)

{asb}e(3)

= > can(0—yar)

{a,b}coU
- - Z Cab Yab
{a,b}edU
(6)
<0.

The assertion follows by Lemma 1.

Cab Yab

(8)

(9)

(10)

(11)

(12)
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Partial optimality — Clustering

For any » € R, we write

VH:_{T ifr >0

0 otherwise

S {0 ifr>0

—r otherwise

(13)

(14)
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Partial optimality — Clustering

Next, we establish a less trivial partial optimality condition for the CPP:

Proposition 1. Let A # @ finite and c: (’;) — R. If there exist U C A and
{u,v} € U such that

[Cab]— < cuv , (15)
{a,b}coU\{{u,v}}

there exists a solution y* to CPP(A, ¢) such that y;,, = 0.
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Partial optimality — Clustering
Proof. Let £: Y4 — Y4 such that for all y € Ya:

s@)—{y oo =0 (16)

ou(y) otherwise

For any y € Ya and ¢’ := £(y), we have g, = 0.
Moreover, ¢ is improving for CPP (A, c¢) because for all y € Ya and y' := £(y),
the following holds: If yos = 0 then . (y') — we(y) = pe(y) — @e(y) =0
Otherwise:
W) =) = D Cab(Yab — Yab) (17)
{a.}e(3)
= Cun(0— 1) + > cab(0—yar)  (18)

{a,b}€0U\{{u,v}}

= —Cuv — Z Cab Yab (19)
{a,b}cdU\{{u,v}}

< —Cuow + Z [Cab]— (20)
{a,b}coU\{{u,v}}

(15)

<0. (21)

The assertion follows by Lemma 1.
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Partial optimality — Clustering

Next, we establish a non-trivial partial optimality condition for the CPP:

Lemma 3. Let A # o finite and c: (‘;‘) — R. If there exist U C A such that

[Cua]7 S i min Z (761“’)(1 - yuv) ) (22)
{u,a}eoU {s,tye(§) veYu] ”
s Yst=0 {u,v}G(Q)

there exists a solution y* to CPP(A, c) such that V{u,v} € (}): i, = L.
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Partial optimality — Clustering
Proof. Let £: Y4 — Y4 such that for all y € Ya:

€(y) = {(U& ooy)(y) if Hu,v} e (g) Yuo = 0 . (23)

Y otherwise

For any y € Ya, y' := &(y) and all {u,v} € (¥), we have y,, = 1.

Moreover, ¢ is improving because for all y € Y4 and y' := £(y), the following
condition holds: If V{u,v} € (g) Yuw = 1 then

@e(y') = ¢c(y) = pe(y) — pe(y) = 0 < 0. Otherwise:

‘Pc(y,) - SDC(y) = Z Cua(o - yua) + Z Cuv(l - yuv) (24)

{u,a}€dU {u,v}E(g)

< D0 lewa- o max max o 37 cun(l—yu)
{u,a}€dU {s,t}€(2) Zést:U() {u,v}e(g)

(25)
< Z [Cua]- — min  min Z (—cuv) (1 — Yuv)

U
{u,a}ecdU {S‘t}e(Z) foY:U()‘ {u’v}e(g)
(26)
(22)
<0. (27)

The assertion follows by Lemma 1.
14/15



Partial optimality — Clustering

Even if set U C A is given, Condition (22) of Lemma 3 cannot be checked
efficiently: In general, the calculation of

min min (7Cuv)(1 - yuu) (28)
S v EY
{: ,t}e(z)zst:%l {urre(Y)

requires solving CPPs with the additional constraint ys; = 0.

However, in the special case where V{u,v} € (g) cuv < 0, these problems
become minimum st-cut problems that can be solved efficiently.

Hence, an idea toward applying Lemma 3 algorithmically is to work in two steps:

1. to heuristically search for a set U such that

» inside U, all costs are non-positive
» on the boundary of U, the sum of the negative costs is large.

2. to efficiently test (22) from Lemma 3 for these sets U.
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