Machine Learning II

Jannik Irmai, Jannik Presberger, David Stein, Bjoern Andres

Machine Learning for Computer Vision TU Dresden

https://mlcv.cs.tu-dresden.de/courses/25-summer/ml2/

Summer Term 2025

Contents.

- In this part of the course, we discuss a technique for solving combinatorial optimization problems partially and efficiently: the construction of improving maps.
- We concentrate on three NP-hard problems that arise as inference problems in the field of machine learning: the clique partition problem for clustering, the linear ordering problem, and the graphical model inference problem.

Definition 1. Let $Y \neq \emptyset$ finite, $\varphi \colon Y \to \mathbb{R}$ and $\sigma \colon Y \to Y$. We call σ improving for the problem $\min\{\varphi(y) \mid y \in Y\}$ iff $\varphi \circ \sigma \leq \varphi$.

Lemma 1. Let $Y \neq \emptyset$ finite and $\varphi: Y \to \mathbb{R}$. Let $\sigma: Y \to Y$ improving for the problem $\min\{\varphi(y) \mid y \in Y\}$. If $Q \subseteq Y$ and $\sigma(Y) \subseteq Q$, there exists a solution y^* such that $y^* \in Q$.

Proof. A solution y' exists because Y is non-empty and finite. $y^* := \sigma(y')$ is also a solution because σ is improving. Moreover, $y^* \in Q$ because $\sigma(Y) \subseteq Q$. \Box

Corollary 1. Let $S \neq \emptyset$ finite, $Y \subseteq \{0,1\}^S$ and $\varphi \colon Y \to \mathbb{R}$. Let $s \in S$ and $q \in \{0,1\}$. If $\sigma \colon Y \to Y$ is improving for the problem $\min\{\varphi(y) \mid y \in Y\}$ such that $\forall y \in Y \colon \sigma(y)_s = q$, there exists a solution y^* such that $y^*_s = q$.

Remark 1. If we can construct such an improving map, we can fix the variable y_s^* to q without compromising optimality.

Definition 2. For any $A \neq \emptyset$ finite, any $c: \binom{A}{2} \to \mathbb{R}$,

$$Y_A := \left\{ y \colon \binom{A}{2} \to \{0,1\} \mid \forall a \in A \ \forall b \in A \setminus \{a\} \ \forall c \in A \setminus \{a,b\} \colon y_{ab} + y_{bc} - 1 \le y_{ac} \right\}$$
(1)

and $\varphi_c \colon Y_A \to \mathbb{R} \colon y \mapsto \langle c, y \rangle$,

$$\min\{\varphi_c(y) \mid y \in Y_A\}\tag{2}$$

is called the instance of the (clique) partition problem wrt. A and c, which we abbreviate as CPP(A, c).

Example 1.

For any set A and any $U\subseteq A,$ we write

$$\partial U := \left\{ \{u, a\} \in \binom{A}{2} \mid u \in U \land a \notin U \right\} \quad . \tag{3}$$

Definition 3. Let $A \neq \emptyset$ finite and $U \subseteq A$.

► The elementary cut map wrt. U is the $\sigma_U : Y_A \to Y_A$ such that $\forall y \in Y_A \ \forall \{a, b\} \in \binom{A}{2}$:

$$\sigma_U(y)_{ab} = \begin{cases} 0 & \text{if } \{a, b\} \in \partial U \\ y_{ab} & \text{otherwise} \end{cases}$$
(4)

► The elementary join map wrt. U is the $\sigma'_U: Y_A \to Y_A$ such that $\forall y \in Y_A \ \forall \{a, b\} \in \binom{A}{2}$:

$$\sigma'_{U}(y)_{ab} = \begin{cases} 1 & \text{if } \{a, b\} \in \binom{U}{2} \\ 1 & \text{if } a \in U \land \exists u \in U : y_{ub} = 1 \\ 1 & \text{if } b \in U \land \exists u \in U : y_{ua} = 1 \\ 1 & \text{if } (\exists u \in U : y_{ua} = 1) \land \\ (\exists u \in U : y_{ub} = 1) \\ y_{ab} & \text{otherwise} \end{cases}$$
(5)

Remark 2. σ_U is well-defined, i.e. $\sigma_U(Y_A) \subseteq Y_A$. σ'_U is well-defined. $\sigma'_U \circ \sigma_U$ is well-defined.

To begin with, we establish a trivial partial optimality condition for the CPP:

Lemma 2. Let $A \neq \emptyset$ finite and $c: \binom{A}{2} \to \mathbb{R}$. If there exists $U \subseteq A$ such that $\forall \{a, b\} \in \partial U: \quad 0 \leq c_{ab}$, (6)

there exists a solution y^* to CPP(A, c) such that

$$\forall \{a, b\} \in \partial U \colon \quad y_{ab}^* = 0 \quad . \tag{7}$$

Proof. For any $y \in Y_A$, $\sigma_U(y)$ satisfies (7). Moreover, σ_U is improving for CPP(A, c) because for any $y \in Y_A$ and $y' := \sigma_U(y)$:

$$\varphi_{c}(y') - \varphi_{c}(y) = \sum_{\{a,b\} \in \binom{A}{2}} c_{ab} \, y'_{ab} - \sum_{\{a,b\} \in \binom{A}{2}} c_{ab} \, y_{ab}$$
(8)
$$= \sum_{\{a,b\} \in \binom{A}{2}} c_{ab}(y'_{ab} - y_{ab})$$
(9)

$$=\sum_{\{a,b\}\in\partial U}c_{ab}(0-y_{ab})$$
(10)

$$= -\sum_{\{a,b\}\in\partial U} c_{ab} \, y_{ab} \tag{11}$$

$$\stackrel{6)}{\leq} 0$$
 . (12)

The assertion follows by Lemma 1.

For any $r \in \mathbb{R}$, we write

$$[r]_{+} := \begin{cases} r & \text{if } r \ge 0\\ 0 & \text{otherwise} \end{cases}$$
(13)
$$[r]_{-} := \begin{cases} 0 & \text{if } r \ge 0\\ -r & \text{otherwise} \end{cases} .$$
(14)

Next, we establish a less trivial partial optimality condition for the CPP:

Proposition 1. Let $A \neq \emptyset$ finite and $c: \binom{A}{2} \to \mathbb{R}$. If there exist $U \subseteq A$ and $\{u, v\} \in \partial U$ such that

$$\sum_{[a,b]\in\partial U\setminus\{\{u,v\}\}} [c_{ab}]_{-} \le c_{uv} \quad , \tag{15}$$

there exists a solution y^* to CPP(A, c) such that $y^*_{uv} = 0$.

Partial optimality - Clustering

Proof. Let $\xi: Y_A \to Y_A$ such that for all $y \in Y_A$:

$$\xi(y) = \begin{cases} y & \text{if } y_{uv} = 0\\ \sigma_U(y) & \text{otherwise} \end{cases}$$
(16)

For any $y \in Y_A$ and $y' := \xi(y)$, we have $y'_{uv} = 0$.

Moreover, ξ is improving for CPP(A, c) because for all $y \in Y_A$ and $y' := \xi(y)$, the following holds: If $y_{ab} = 0$ then $\varphi_c(y') - \varphi_c(y) = \varphi_c(y) - \varphi_c(y) = 0 \le 0$. Otherwise:

$$\varphi_c(y') - \varphi_c(y) = \sum_{\{a,b\} \in \binom{A}{2}} c_{ab}(y'_{ab} - y_{ab})$$
(17)

$$= c_{uv}(0-1) + \sum_{\{a,b\} \in \partial U \setminus \{\{u,v\}\}} c_{ab}(0-y_{ab})$$
(18)

$$= -c_{uv} - \sum_{\{a,b\}\in\partial U\setminus\{\{u,v\}\}} c_{ab} \, y_{ab} \tag{19}$$

$$\leq -c_{uv} + \sum_{\{a,b\}\in\partial U\setminus\{\{u,v\}\}} [c_{ab}]_{-}$$
 (20)

$$\stackrel{(15)}{\leq} 0$$
 . (21)

The assertion follows by Lemma 1.

12/15

Next, we establish a non-trivial partial optimality condition for the CPP:

Lemma 3. Let $A \neq \emptyset$ finite and $c: \binom{A}{2} \to \mathbb{R}$. If there exist $U \subseteq A$ such that

$$\sum_{\{u,a\}\in\partial U} [c_{ua}]_{-} \leq \min_{\{s,t\}\in\binom{U}{2}} \min_{\substack{y\in Y_U \\ y_{st}=0}} \sum_{\{u,v\}\in\binom{U}{2}} (-c_{uv})(1-y_{uv}) , \qquad (22)$$

there exists a solution y^* to CPP(A, c) such that $\forall \{u, v\} \in {U \choose 2}$: $y_{uv}^* = 1$.

Partial optimality - Clustering

Proof. Let $\xi: Y_A \to Y_A$ such that for all $y \in Y_A$:

$$\xi(y) := \begin{cases} (\sigma'_U \circ \sigma_U)(y) & \text{if } \exists \{u, v\} \in \binom{U}{2} \colon y_{uv} = 0\\ y & \text{otherwise} \end{cases}$$
(23)

For any $y \in Y_A$, $y' := \xi(y)$ and all $\{u, v\} \in {U \choose 2}$, we have $y'_{uv} = 1$.

Moreover, ξ is improving because for all $y \in Y_A$ and $y' := \xi(y)$, the following condition holds: If $\forall \{u, v\} \in {U \choose 2}$: $y_{uv} = 1$ then $\varphi_c(y') - \varphi_c(y) = \varphi_c(y) - \varphi_c(y) = 0 \le 0$. Otherwise:

$$\varphi_{c}(y') - \varphi_{c}(y) = \sum_{\{u,a\} \in \partial U} c_{ua}(0 - y_{ua}) + \sum_{\{u,v\} \in \binom{U}{2}} c_{uv}(1 - y_{uv})$$
(24)

$$\leq \sum_{\{u,a\}\in\partial U} [c_{ua}]_{-} + \max_{\{s,t\}\in\binom{U}{2}} \max_{\substack{y\in Y_U|\\y_{st}=0}} \sum_{\{u,v\}\in\binom{U}{2}} c_{uv}(1-y_{uv})$$
(25)

$$\leq \sum_{\{u,a\}\in\partial U} [c_{ua}]_{-} - \min_{\{s,t\}\in\binom{U}{2}} \min_{\substack{y\in Y_U|\\y_{st}=0}} \sum_{\{u,v\}\in\binom{U}{2}} (-c_{uv})(1-y_{uv})$$
(26)

$$\stackrel{(22)}{\leq} 0$$
 . (27)

The assertion follows by Lemma 1.

Even if set $U \subseteq A$ is given, Condition (22) of Lemma 3 cannot be checked efficiently: In general, the calculation of

$$\min_{\{s,t\} \in \binom{U}{2}} \min_{\substack{y \in Y_U | \\ y_{st} = 0}} \sum_{\{u,v\} \in \binom{U}{2}} (-c_{uv})(1 - y_{uv})$$
(28)

requires solving CPPs with the additional constraint $y_{st} = 0$.

However, in the special case where $\forall \{u, v\} \in {\binom{U}{2}}$: $c_{uv} \leq 0$, these problems become minimum *st*-cut problems that can be solved efficiently.

Hence, an idea toward applying Lemma 3 algorithmically is to work in two steps:

- 1. to heuristically search for a set \boldsymbol{U} such that
 - ▶ inside *U*, all costs are non-positive
 - on the boundary of U, the sum of the negative costs is large.
- 2. to efficiently test (22) from Lemma 3 for these sets U.