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Basic mathematical notation:

» For any finite set A, let |A| denote the number of elements of A.

> For any set A, let 2* denote the power set of A.

» For any set A and any m € N, let ( ) denote the set of all m-elementary
subsets of A, thatis, (%) = {B € 2*: |B| =m}.

> For any sets A, B, let B* denote the set of all maps from A to B.

> Forany f € B4, any a € A and any b € B, we may write b = f(a) or
b = f, instead of (a,b) € f

» Let (-,-) denote the standard inner product, and let || - || denote the
lo-norm.

» We identify any natural number m € N with the set m = {0,...,m — 1}.
In particular, we may write j € m instead of j € {0,...,m — 1}.
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Digital images

Definition 1. For any ng,n1 € Nand any C # 0, amap f € C™°*"! is called a
digital image, and a map f € C?*Z is called an infinite digital image.

In both cases, no,n1 are called the width and height of the image, and C is
called its color set. The elements of ng x n; are called the pixels of the image.
The graph G = (V, E) with V = ng x n1 and such that

Vr,r' e Vi{r,r'} € E< |r —r'|| = 1 is called its pixel grid graph.

Examples.

Gray levels Cc ={0,...,255}

RGB colors C =1o,...,255}3

Real numbers E.g. C =Ror C =10,1]
Real tuples Eg. C=R"or C =10,1]"
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Point operator

Definition 2. For any ng,n1 € N and any set C' # (), a point operator on
digital images of width ng, height n1 and with color set C is a function

@: CmOXM y groXm (1)
such that there exists a function

x: C xngxng —C (2)
such that for every digital image f € C™°*™! and every pixel (z,y) € no X ni:

e(H(zy) = x(f(z,9),2,9) - (3)

Remark. The color o(f)(z,y) of the image ©(f) at the pixel (z,y) depends
only on the color f(z,y) of the image f at that same pixel, and on the pixel
coordinates, « and y.

Example. Every £: C' — C' defines a point operator, namely ¢¢: f +— £o f.
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Gamma Operator

Definition 3. Let C = [0, 1]. For any v € (0, 00) and the function
&:C — C:cw 7, the point operator pe: f — o f is called the gamma
operator.
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Histogram equilibration

Definition 4. The histogram of a digital image f: no x ny — C C R is the
function h: C' — Ny such that for any c € C:

h(e) = [{r € no x n1 | f(r) = ¢}

(4)

The cumulative distribution of colors is the function H: C — [0, 1] such that
for any c € C:

1
H(c) =
(c) — > k(o) (5)
cef(noxni)
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Histogram equilibration

Definition 5. For any C' = [¢™,c¢"] C R and any monotonous function
H:C — [0,1] such that H(c") = 1, H-equilibration is the function

u: ¢,
c—c + (¢t —c¢)H(c)

For fixed H and fixed no,n1 € N, H-equilibration defines a point operator that
we call the H-equilibrator:

ey C”OX"H N Cnoxnl
H-

f=&uof

For any digital image f with the cumulative distribution H of colors C', we call
the image @¢,, (f) the self-equilibration of f.

Question. Is self-equilibration a point operator?
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Histogram equilibration

8,000 .
6,000 %
< 4,000 -
=
2,000

0’\6 | | ]
0 100 200
C

! !
0 100 200
c

8/46



Histogram equilibration
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Linear operators

An operator : R"0*™1 — R™*™1 is linear if and only if there exists
a: (no x n1)? — R such that for any (image) f € R™*"! and any (pixel)
(z,y) € no X ny:

ng—1lny—1

()@ y) =D D auyin FG,F) - (6)
j=0 k=0
o(f)(z,y) =
Gy . f

More restrictive than such an operator with (n0n1)2 coefficients is:

o(f)(z,y) = ] B

Gary-- : Say f
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Linear operators

Even more restrictive is the typical setting in which we are given mg, m1 € N
and g: mo x m1 — R and

o(f)(z,y) = D Y)

g : Sayf

mop—1mi1—1

Yo D gl kS (e ti— [y k- [P)
j=0 k=0

Remark.

1. f needs to be extended in order for ¢(f) to be well-defined.

2. g uniquely defines a linear operator ¢,.

3. Its application to images f defines a binary operation f ® g := p4(f).
4. g itself is a digital image.
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Linear operators

Definition 6. 1-dimensional discrete convolution is the operation
%: RZ x RZ — R” such that for any f,g: Z — R and any t € Z:

S f(t+s)g(—s) .

2-dimensional discrete convolution is the operation *:
such that for any f,g9: Z x Z — R and any (z,y) € Z X Z:

o) oo

(fx9)@y)= > > fle+iy+kg(—5—k) .

j=—o0 k=—o0

RZXZ RZXZ N

(7)

RZXZ

(8)

Remark. The minus (in —s in (7), and in —j, —k in (8)) makes the operator

commutative.
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Linear operators

Lemma 1. For any f,g,h € RZ*Z and any a € R, we have:
fxg=gx*f (commutativity)
[x(gxh)=(f*g)*h (associativity)
f*(g+h)=(fxg9)+(f*h) (distributivity)
a(fxg)=(af)xg (associativity with )

(9)
(10)
(11)
(12)
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Linear operators

Definition 7. For any C # (), the map

X . U Cngxnl N CZXZ

ng,n1 €N

such that for any ng,n1 € N, any f: ng x n1 — C and any (z,y) € Z*:

flx,y) if (z,y) € no xm
0 otherwise

X(f)(z,y) = {

is called the infinite 0-extension of digital images.

Definition 8. For any C' # () and any ng,n: € N, the map
Rno ny CZXZ N Cn0><n1
such that for any f: Z x Z — C and any (z,y) € no X ni:

Rugny (F)(z,9) = f(z,y)

is called the (no, n1)-restriction of infinite digital images.

(13)

(14)

(15)

(16)
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Linear operators

Definition 9. For any j, k € Z, the operator S, : CZ*% — C**% such that for
any z,y € Z: Sjr(f)(z,y) = f(x + j,y + k) is called the (z,y)-shift of infinite
digital images.

Definition 10. The operator L: CZ*% — C?*% such that for any z,y € Z, we
have L(f)(z,y) = f(—z,—y) is called the reflection of infinite digital images.
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Linear operators

Definition 11. For any ng,n1,mo, m1 €N, any f € C™0*™ any g € C™0*™1,
do=—|™%1] and dy = — | ™L=1], the convolution of f and g is defined as

F*g:= Rungn, (X(f) * Saga, (X(9))) (17)

Lemma 2. For any f,g € C?*%:

f®g=fxL(g) (18)

15/46



Linear operators

Definition 12. For any o0 € R™ and any m € Ny (typically: m > 30), for the

function

2
ot
w: R—=R: t—e 202

and the number

the functions
go: (Cm+1)x1—-R: (z,0)—
g1: 1x(@2m+1)—=R: (0,y)—

are called Gaussian averaging filters.

N

N

w(j —m)

m)

w(j —

(19)

(20)

(21)

(22)
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Linear operators

f*g0o*q

f*go*q

=10.0
m = 30

o
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Linear operators
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Linear operators

2f = (f *go*g1)
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Linear operators

Definition 13. The discrete derivatives of an infinite digital image
f:17Z xXZ — R are defined as

Oof = g+ do (23)
61f =g* d1 (24)
with
1
do = 5(17(), -1) (25)
1
a=11 o (26)
T2
—1

The discrete gradient is defined as

v/ = (g‘);) , (27)

and |V f| = /(00f)? + (01 f)? is called its magnitude.
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Linear operators

f*do f*d1
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Linear operators

V([ xdo)? + (f di)?
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Non-linear operators

Definition 14. Let ng,n1 € N, let V =ng X n; and let C C R. Given

» ametricds : V x V — R and a decreasing w,: Rf — [0, 1]
» a metric d. : C x C — R} and a decreasing w.: R} — [0,1]

> a N :V — 2V that defines for every pixel v € V a set N(v) C V called
the spatial neighborhood of v

» the v: CV — RY, called normalization, such that for any digital image
f:V = C and any pixel v € V:

V()= D w(ds(v,0") we(de(f(v), f(V))) (28)

v’ €N (v)

the bilateral filter wrt. d, ws, de, w. and N is the 8: CV — (RC)V such that
for any digital image f : V — C and any pixel v € V:
1

B(Hw) = S welds(0,0)) welde(£(0), F0)) () (29)
ZRIONR- N
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Non-linear operators

Example.

» d,(v,v") = ||[v — |2 and, for a filter parameter o > 0:

1 z?
ws(x) = mexp sy

» d.(g9,9') =|g — g’| and, for a filter parameter o. > 0:

1
1425

2
Cfc

we ()

> for a filter parameter n € R

N@) = {v' € V]ds(v,v") < n}

Exercise. Implementation and (recursive) application of the bilateral filter.

(30)

(31)

(32)
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Non-linear operators

Definition 15. Let ng,n1 € N, let V. =n9 x n1, let C C R and let

N : V — 2V define for every pixel v € V a set N(v) C V called the spatial
neighborhood of v. The median operator wrt. N is the function

M:CV — CV such that forany f: V — C and any v € V:

M(f)(v) = median f(N(v)) (33)
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Non-linear operators

Filtered image
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Non-linear operators

Morphological operators

» We may identify any binary infinite digital image f: Z% — {0,1} with its
support set f~1(1) = {v € Z* | f(v) = 1}.

» This allows us to apply operations from the field of binary mathematical
morphology to binary infinite digital images.
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Non-linear operators

Binary image

S '%’?ﬁ?@‘ﬁ
ORI e
e P
iﬁm"{m

’3‘ cﬂﬁ%‘?‘? )
0 EEER

!By courtesy of Stephan Grill and his lab at the MPI of Molecular Cell Biology and Genetics. 27/46



Non-linear operators

Definition 16. A function ®: 2% % 922 5 9% is called a morphological
operation.

Example 1. For any A, B C Z*:

AcB:={veZ’|B+vC A} (erosion) (34)
A@B:={veZ| —B+vNA#0D} (dilation) (35)
AoB:=(A6B)® B (opening) (36)
AeB:=(A®B)SB (closing) (37)

Definition 17. For any (typically finite and small) B C Z? called a structuring
element and any morphological operation ®, the morphological operator
wrt. ® and B is defined as the pgp: {0,1}7*% — {0,1}**% such that for any
(infinite binary digital image) f: Z* — {0,1} and any (pixel) v € Z*:

pep(filv)=1 & wvef()®B. (38)

28/46



Non-linear operators

Binary image
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Non-linear operators

Binary image
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Non-linear operators

Binary image
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Non-linear operators

Binary image Closing
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Non-linear operators

Definition 18. For any ng,n1 € N, the set V = ny x n1 and the pixel grid
graph G = (V, E), an operator ¢: N§' — N{ is called a (connected)
components operator if for any digital image f: V' — Np and any pixels
v,w € V, we have p(f)(v) = o(f)(w) iff there exists a vw-path in G along
which all pixels have the color zero.
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Non-linear operators

Binary image Connected component labeling
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Non-linear operators

size t componentsImage(
Marray<size t> const & image,
Marray<size t> & components
) {
components.resize({image.shape(0), image.shape(1)});
PixelGridGraph pixelGridGraph({image.shape(@), image.shape(1)});
size t component = 0;
stack<size t> stack;
for(size t v = 0; v < pixelGridGraph.numberOfVertices(); ++v) {
Pixel pixel = pixelGridGraph.coordinate(v);
if (image(pixel[0], pixel[l]) ==
&& components(pixel[0], pixel[1l]) == 0) {
++component;
components(pixel[0], pixel[1l]) = component;
stack.push(v);
while(!stack.empty()) {
size t const v = stack.top();
stack.pop();
for(auto it = pixelGridGraph.verticesFromVertexBegin(v);
it != pixelGridGraph.verticesFromVertexEnd(v); ++it) {
Pixel pixel = it.coordinate();
if(image (pixel[0], pixell[1]) ==
& components (pixel[0], pixel[1l]) == 0) {
components (pixel[0], pixel[1]) = component;
stack.push(*it);

}
}

return component; // number of components
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Non-linear operators

Definition 19. For any ng,n1 € N, the set V' = no x n1 and the pixel grid
graph G = (V, E), the distance operator : N§ — N§ is such that for any
digital image f: V — Ng and any pixel v € V, the number ¢(f)(v) is the
minimum distance in the pixel grid graph from v to a pixel w with f(w) # 0.
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Non-linear operators

Binary image
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Non-linear operators

1size t distanceImage(

2 Marray<size t> const & image,

3 Marray<size t> & distances

4) {

5) distances.resize({image.shape(0), image.shape(1)}, 0);

6 GridGraph pixelGridGraph({image.shape (@), image.shape(1)});
7 size t distance = 0;
8 array<stack<size t>, 2> stacks;

9 for(size t v = 0; v < pixelGridGraph.numberOfvertices(); ++v) {
10 Pixel pixel = pixelGridGraph.coordinates(v);

11 if(image(pixel[0], pixel[1l]) != 0)

12 stacks[0].push(v);

13

14 ++distance;

15 for(;;) {

16 auto & stack = stacks[(distance - 1) % 2];

17 if(stack.empty())

18 return distance - 1; // maximal distance

19 while(!stack.empty()) {

20 size t const v = stack.top();

21 stack.pop();

22 for(auto it = pixelGridGraph.verticesFromVertexBegin(v);
23 it != pixelGridGraph.verticesFromvertexeEnd(v); ++it) {
24 Pixel pixel = it.coordinate();

25 if(image(pixel[0], pixel[1])

26 && distances(pixel[0], pixel[1l]) == 0) {

27 distances(pixel[0], pixell[1l]) = distance;

28 stacks[distance % 2].push(*it);

29 }

30 }

31 }

32 ++distance;

33 }

34}
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Non-linear operators

For any set V of pixels and neighborhood function N: V — 2V,
non-maximum suppression is the operator onums: RV — RY such that for
each digital image f: V — R and all pixels v € V:

f(v) if f(v) = max f(N(v))

39
0 otherwise (39)

enms(f)(v) = {
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Edge and corner detection

Edge detection®
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Edge and corner detection
Canny’s edge detection algorithm! has four steps

1. Gradient computation from digital image f: V — R:

g=\0of +0Lf std: :hypot in C4++ (40)
a = atan2(01 f, 0o f) std::atan2 in C4++ (41)

2. Directional non-maximum suppression of g:

312 |1
0 0
11213

3. Double thresholding with 6o, 61 € R such that 6y < 01: A (any) pixel
v € V is taken considered to be a strong edge pixel iff 01 < g(v) and is
taken to be a weak edge pixel iff 8y < g(v) < 6.

4. Weak edge classification: A (any) pixel v € V is taken to be an edge pixel
iff (i) v is a strong edge pixel, or (ii) v is a weak edge pixel and there is a
strong edge pixel in the 8-neighborhood of v.

1J. Canny. A Computational Approach To Edge Detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 8(6):679-698, 1986
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Edge and corner detection

Corner detection?

1ht‘cps ://en.wikipedia.org/wiki/Corner_detection 42/46
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Edge and corner detection

Definition 20. Let no,n1 € N, let V =mn¢ x n1, let f: V — R a digital image,
let 9y, 01 be discrete derivative operators, and let N: V — RY.

For each v € V:

» Let A(v) be the N(v) X 2-matrix such that for every w € N(v):

Aw.(v) = (0o f)(w), (01 f)(w)) . (42)
» Let k,: N(v) — Ry such that 2 wen(w) bv(w) = 1.
» Define the structure tensor of f at v wrt. k, as the 2 X 2-matrix
Se(£) W) = D ku(w) Ay (v)Aw. (v) (43)
weN (v)

~ @f)?(w)  (Bof)(w)(@ f)(w)
= 2 hw) ((8of)(w)(81f)(w) (Ouf)? (w) )

weN (v)
(44)
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Edge and corner detection

Remark 1. Fix a direction by choosing = € R? with |r| = 1 and consider the
k,-weighted squared projection of the gradient of the digital image:

Pw)= > ko(w)|Aw () r|? (45)
weN (v)
= Z kv(w) rTAz.(U)Aw.(U) r (46)
weN (v)
- ( Z kv(w)Az.(v)Aw.(v)> r (47)
weN (v)
= TTS(U) r (48)

With the spectral decomposition

S(v) = 01(v)s1(0)s1 (v) + 02(v)s2(v)s (v) (49)

we obtain
Pr(v) = " (01(0)s1(0)sT (v) + o2 (v)s2(v)s3 (v) ) 7 (50)
= 01(v)[s1(0) - 7* + o2(v)|s2(v) - 7|* (51)
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Edge and corner detection

Remark 2.

» If 01 =02 =0, we have P,.(v) = 0 for any direction r. l.e. the image is
constant.

» If o1 > 0 and o2 = 0, we can choose a direction r such that P,(v) = 0.
l.e. the gradient of the image is non-zero and constant.

» If 01,02 > 0, we cannot choose r such that P.(v) = 0. l.e. the gradient of
the image varies across N (v).
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Edge and corner detection

Definition 21. Let V the set of pixels of a digital image, let S: V — R?*? such
that for any v € V, S(v) is the structure tensor of the image at pixel v, and let
o1(v) > 2(v) > 0 be the eigenvalues of S(v). Harris’ corner detector? wrt. a
neighborhood function N: V — 2V refers to the function wnwms o 2.

2C. Harris and M. Stephens. A Combined Corner and Edge Detector. Alvey Vision Conference.
Vol. 15. 1988
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