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Computer Vision I

Basic mathematical notation:

▶ For any finite set A, let |A| denote the number of elements of A.

▶ For any set A, let 2A denote the power set of A.

▶ For any set A and any m ∈ N, let
(
A
m

)
denote the set of all m-elementary

subsets of A, that is,
(
A
m

)
= {B ∈ 2A : |B| = m}.

▶ For any sets A,B, let BA denote the set of all maps from A to B.

▶ For any f ∈ BA, any a ∈ A and any b ∈ B, we may write b = f(a) or
b = fa instead of (a, b) ∈ f

▶ Let ⟨·, ·⟩ denote the standard inner product, and let ∥ · ∥ denote the
l2-norm.

▶ We identify any natural number m ∈ N with the set m = {0, . . . ,m− 1}.
In particular, we may write j ∈ m instead of j ∈ {0, . . . ,m− 1}.
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Digital images

Definition 1. For any n0, n1 ∈ N and any C ̸= ∅, a map f ∈ Cn0×n1 is called a
digital image, and a map f ∈ CZ×Z is called an infinite digital image.

In both cases, n0, n1 are called the width and height of the image, and C is
called its color set. The elements of n0 × n1 are called the pixels of the image.
The graph G = (V,E) with V = n0 × n1 and such that
∀r, r′ ∈ V : {r, r′} ∈ E ⇔ ∥r − r′∥ = 1 is called its pixel grid graph.

Examples.

Gray levels C = {0, . . . , 255}
RGB colors C = {0, . . . , 255}3
Real numbers E.g. C = R or C = [0, 1]
Real tuples E.g. C = Rn or C = [0, 1]n
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Point operator

Definition 2. For any n0, n1 ∈ N and any set C ̸= ∅, a point operator on
digital images of width n0, height n1 and with color set C is a function

φ : Cn0×n1 → Cn0×n1 (1)

such that there exists a function

χ : C × n0 × n1 → C (2)

such that for every digital image f ∈ Cn0×n1 and every pixel (x, y) ∈ n0 × n1:

φ(f)(x, y) = χ(f(x, y), x, y) . (3)

Remark. The color φ(f)(x, y) of the image φ(f) at the pixel (x, y) depends
only on the color f(x, y) of the image f at that same pixel, and on the pixel
coordinates, x and y.

Example. Every ξ : C → C defines a point operator, namely φξ : f 7→ ξ ◦ f .
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Gamma Operator

Definition 3. Let C = [0, 1]. For any γ ∈ (0,∞) and the function
ξ : C → C : c 7→ cγ , the point operator φξ : f 7→ ξ ◦ f is called the gamma
operator.

γ = 1
4

γ = 1
2

γ = 1 γ = 2 γ = 4
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Histogram equilibration

Definition 4. The histogram of a digital image f : n0 × n1 → C ⊆ R is the
function h : C → N0 such that for any c ∈ C:

h(c) = |{r ∈ n0 × n1 | f(r) = c}| (4)

The cumulative distribution of colors is the function H : C → [0, 1] such that
for any c ∈ C:

H(c) =
1

n0 n1

∑
c′∈f(n0×n1)

c′≤c

h(c) (5)
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Histogram equilibration

Definition 5. For any C = [c−, c+] ⊆ R and any monotonous function
H : C → [0, 1] such that H(c+) = 1, H-equilibration is the function

ξH : [c−, c+] → [c−, c+]

c 7→ c− + (c+ − c−)H(c)

For fixed H and fixed n0, n1 ∈ N, H-equilibration defines a point operator that
we call the H-equilibrator:

φξH : Cn0×n1 → Cn0×n1

f 7→ ξH ◦ f

For any digital image f with the cumulative distribution H of colors C, we call
the image φξH (f) the self-equilibration of f .

Question. Is self-equilibration a point operator?
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Histogram equilibration
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Histogram equilibration
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Linear operators

An operator φ : Rn0×n1 → Rn0×n1 is linear if and only if there exists
a : (n0 × n1)

2 → R such that for any (image) f ∈ Rn0×n1 and any (pixel)
(x, y) ∈ n0 × n1:

φ(f)(x, y) =

n0−1∑
j=0

n1−1∑
k=0

axyjk f(j, k) . (6)

φ(f)(x, y) =

axy·· · f

More restrictive than such an operator with (n0n1)
2 coefficients is:

φ(f)(x, y) =
(x, y)

gxy·· · Sxyf
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Linear operators

Even more restrictive is the typical setting in which we are given m0,m1 ∈ N
and g : m0 ×m1 → R and

φ(f)(x, y) =
(x, y)

g · Sxyf

=

m0−1∑
j=0

m1−1∑
k=0

g(j, k)f
(
x+ j −

⌊
m0−1

2

⌋
, y + k −

⌊
m1−1

2

⌋)
Remark.

1. f needs to be extended in order for φ(f) to be well-defined.

2. g uniquely defines a linear operator φg.

3. Its application to images f defines a binary operation f ⊗ g := φg(f).

4. g itself is a digital image.
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Linear operators

Definition 6. 1-dimensional discrete convolution is the operation
∗ : RZ × RZ → RZ such that for any f, g : Z → R and any t ∈ Z:

(f ∗ g)(t) =
∞∑

s=−∞

f(t+ s) g(−s) . (7)

2-dimensional discrete convolution is the operation ∗ : RZ×Z × RZ×Z → RZ×Z

such that for any f, g : Z× Z → R and any (x, y) ∈ Z× Z:

(f ∗ g)(x, y) =
∞∑

j=−∞

∞∑
k=−∞

f(x+ j, y + k) g(−j,−k) . (8)

Remark. The minus (in −s in (7), and in −j,−k in (8)) makes the operator ∗
commutative.
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Linear operators

Lemma 1. For any f, g, h ∈ RZ×Z and any α ∈ R, we have:

f ∗ g = g ∗ f (commutativity) (9)

f ∗ (g ∗ h) = (f ∗ g) ∗ h (associativity) (10)

f ∗ (g + h) = (f ∗ g) + (f ∗ h) (distributivity) (11)

α(f ∗ g) = (αf) ∗ g (associativity with ·) (12)



13/46

Linear operators

Definition 7. For any C ̸= ∅, the map

X :
⋃

n0,n1∈N

Cn0×n1 → CZ×Z (13)

such that for any n0, n1 ∈ N, any f : n0 × n1 → C and any (x, y) ∈ Z2:

X(f)(x, y) =

{
f(x, y) if (x, y) ∈ n0 × n1

0 otherwise
(14)

is called the infinite 0-extension of digital images.

Definition 8. For any C ̸= ∅ and any n0, n1 ∈ N, the map

Rn0,n1 : C
Z×Z → Cn0×n1 (15)

such that for any f : Z× Z → C and any (x, y) ∈ n0 × n1:

Rn0,n1(f)(x, y) = f(x, y) (16)

is called the (n0, n1)-restriction of infinite digital images.
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Linear operators

Definition 9. For any j, k ∈ Z, the operator Sjk : C
Z×Z → CZ×Z such that for

any x, y ∈ Z: Sjk(f)(x, y) = f(x+ j, y + k) is called the (x, y)-shift of infinite
digital images.

Definition 10. The operator L : CZ×Z → CZ×Z such that for any x, y ∈ Z, we
have L(f)(x, y) = f(−x,−y) is called the reflection of infinite digital images.
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Linear operators

Definition 11. For any n0, n1,m0,m1 ∈ N, any f ∈ Cn0×n1 , any g ∈ Cm0×m1 ,
d0 = −

⌊
m0−1

2

⌋
and d1 = −

⌊
m1−1

2

⌋
, the convolution of f and g is defined as

f ∗ g := Rn0n1(X(f) ∗ Sd0d1(X(g))) (17)

Lemma 2. For any f, g ∈ CZ×Z:

f ⊗ g = f ∗ L(g) (18)
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Linear operators

Definition 12. For any σ ∈ R+ and any m ∈ N0 (typically: m ≥ 3σ), for the
function

w : R → R : t 7→ e
− t2

2σ2 (19)

and the number

N :=
m∑

j=−m

w(j) , (20)

the functions

g0 : (2m+ 1)× 1 → R : (x, 0) 7→ w(j −m)

N
(21)

g1 : 1× (2m+ 1) → R : (0, y) 7→ w(j −m)

N
(22)

are called Gaussian averaging filters.
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Linear operators

f f ∗ g0 ∗ g1 f ∗ g0 ∗ g1

σ = 3.0 σ = 10.0
m = 9 m = 30
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Linear operators

f

2f − (f ∗ g0 ∗ g1)

σ = 1.0
m = 3
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Linear operators

f 2f − (f ∗ g0 ∗ g1)

σ = 1.0
m = 3
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Linear operators

Definition 13. The discrete derivatives of an infinite digital image
f : Z× Z → R are defined as

∂0f := g ∗ d0 (23)

∂1f := g ∗ d1 (24)

with

d0 =
1

2
(1, 0,−1) (25)

d1 =
1

2

 1

0

−1

 (26)

The discrete gradient is defined as

∇f =

(
∂0f

∂1f

)
, (27)

and |∇f | =
√

(∂0f)2 + (∂1f)2 is called its magnitude.
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Linear operators

f f ∗ d0 f ∗ d1
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Linear operators

f
√

(f ∗ d0)2 + (f ∗ d1)2
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Non-linear operators

Definition 14. Let n0, n1 ∈ N, let V = n0 × n1 and let C ⊆ R. Given

▶ a metric ds : V × V → R+
0 and a decreasing ws : R+

0 → [0, 1]

▶ a metric dc : C × C → R+
0 and a decreasing wc : R+

0 → [0, 1]

▶ a N : V → 2V that defines for every pixel v ∈ V a set N(v) ⊆ V called
the spatial neighborhood of v

▶ the ν : CV → RV , called normalization, such that for any digital image
f : V → C and any pixel v ∈ V :

ν(f)(v) =
∑

v′∈N(v)

ws(ds(v, v
′))wc(dc(f(v), f(v

′))) , (28)

the bilateral filter wrt. ds, ws, dc, wc and N is the β : CV → (RC)V such that
for any digital image f : V → C and any pixel v ∈ V :

β(f)(v) =
1

ν(f)(v)

∑
v′∈N(v)

ws(ds(v, v
′))wc(dc(f(v), f(v

′))) f(v′) (29)
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Non-linear operators

Example.

▶ ds(v, v
′) = ∥v − v′∥2 and, for a filter parameter σs > 0:

ws(x) =
1

σs

√
2π

exp

(
− x2

2σ2
s

)
(30)

▶ dc(g, g
′) = |g − g′| and, for a filter parameter σc > 0:

wc(x) =
1

1 + x2

σ2
c

(31)

▶ for a filter parameter n ∈ R+
0 :

N(v) = {v′ ∈ V | ds(v, v′) ≤ n} (32)

Exercise. Implementation and (recursive) application of the bilateral filter.
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Non-linear operators

Definition 15. Let n0, n1 ∈ N, let V = n0 × n1, let C ⊆ R and let
N : V → 2V define for every pixel v ∈ V a set N(v) ⊆ V called the spatial
neighborhood of v. The median operator wrt. N is the function
M : CV → CV such that for any f : V → C and any v ∈ V :

M(f)(v) = median f(N(v)) (33)
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Non-linear operators

Noisy image Filtered image

f M(f)
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Non-linear operators

Morphological operators

▶ We may identify any binary infinite digital image f : Z2 → {0, 1} with its
support set f−1(1) = {v ∈ Z2 | f(v) = 1}.

▶ This allows us to apply operations from the field of binary mathematical
morphology to binary infinite digital images.
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Non-linear operators

Image1 Binary image

f f ≥ 45

1By courtesy of Stephan Grill and his lab at the MPI of Molecular Cell Biology and Genetics.
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Non-linear operators

Definition 16. A function ⊗ : 2Z
2

× 2Z
2

→ 2Z
2

is called a morphological
operation.

Example 1. For any A,B ⊆ Z2:

A⊖B := {v ∈ Z2 | B + v ⊆ A} (erosion) (34)

A⊕B := {v ∈ Z2 | −B + v ∩A ̸= ∅} (dilation) (35)

A ◦B := (A⊖B)⊕B (opening) (36)

A •B := (A⊕B)⊖B (closing) (37)

Definition 17. For any (typically finite and small) B ⊆ Z2 called a structuring
element and any morphological operation ⊗, the morphological operator
wrt. ⊗ and B is defined as the φ⊗B : {0, 1}Z×Z → {0, 1}Z×Z such that for any
(infinite binary digital image) f : Z2 → {0, 1} and any (pixel) v ∈ Z2:

φ⊗B(f)(v) = 1 ⇔ v ∈ f−1(1)⊗B . (38)
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Non-linear operators

Binary image Erosion

f φ⊖B(f)
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Non-linear operators

Binary image Dilation

f φ⊕B(f)
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Non-linear operators

Binary image Opening

f φ◦B(f)
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Non-linear operators

Binary image Closing

f φ•B(f)
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Non-linear operators

Definition 18. For any n0, n1 ∈ N, the set V = n0 × n1 and the pixel grid
graph G = (V,E), an operator φ : NV

0 → NV
0 is called a (connected)

components operator if for any digital image f : V → N0 and any pixels
v, w ∈ V , we have φ(f)(v) = φ(f)(w) iff there exists a vw-path in G along
which all pixels have the color zero.
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Non-linear operators

Binary image Connected component labeling

f φ(f)
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Non-linear operators
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Non-linear operators

Definition 19. For any n0, n1 ∈ N, the set V = n0 × n1 and the pixel grid
graph G = (V,E), the distance operator φ : NV

0 → NV
0 is such that for any

digital image f : V → N0 and any pixel v ∈ V , the number φ(f)(v) is the
minimum distance in the pixel grid graph from v to a pixel w with f(w) ̸= 0.
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Non-linear operators

Binary image Distance image

f φ(f)
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Non-linear operators
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Non-linear operators

For any set V of pixels and neighborhood function N : V → 2V ,
non-maximum suppression is the operator φNMS : RV → RV such that for
each digital image f : V → R and all pixels v ∈ V :

φNMS(f)(v) =

{
f(v) if f(v) = max f(N(v))

0 otherwise
(39)
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Edge and corner detection

Image1 Edge detection1

1https://en.wikipedia.org/wiki/Canny_edge_detector

https://en.wikipedia.org/wiki/Canny_edge_detector
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Edge and corner detection

Canny’s edge detection algorithm1 has four steps

1. Gradient computation from digital image f : V → R:

g =
√

∂0f + ∂1f std::hypot in C++ (40)

α = atan2(∂1f, ∂0f) std::atan2 in C++ (41)

2. Directional non-maximum suppression of g:

00

1

1

2

2

3

3

00

1

1

2

23

3

3. Double thresholding with θ0, θ1 ∈ R+
0 such that θ0 ≤ θ1: A (any) pixel

v ∈ V is taken considered to be a strong edge pixel iff θ1 ≤ g(v) and is
taken to be a weak edge pixel iff θ0 ≤ g(v) < θ1.

4. Weak edge classification: A (any) pixel v ∈ V is taken to be an edge pixel
iff (i) v is a strong edge pixel, or (ii) v is a weak edge pixel and there is a
strong edge pixel in the 8-neighborhood of v.

1J. Canny. A Computational Approach To Edge Detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 8(6):679–698, 1986
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Edge and corner detection

Image1 Corner detection1

1https://en.wikipedia.org/wiki/Corner_detection

https://en.wikipedia.org/wiki/Corner_detection
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Edge and corner detection

Definition 20. Let n0, n1 ∈ N, let V = n0 × n1, let f : V → R a digital image,
let ∂0, ∂1 be discrete derivative operators, and let N : V → RV .

For each v ∈ V :

▶ Let A(v) be the N(v)× 2-matrix such that for every w ∈ N(v):

Aw·(v) = ((∂0f)(w), (∂1f)(w)) . (42)

▶ Let kv : N(v) → R+
0 such that

∑
w∈N(v) kv(w) = 1.

▶ Define the structure tensor of f at v wrt. kv as the 2× 2-matrix

Sk(f)(v) :=
∑

w∈N(v)

kv(w)AT
w·(v)Aw·(v) (43)

=
∑

w∈N(v)

kv(w)

(
(∂0f)

2(w) (∂0f)(w)(∂1f)(w)
(∂0f)(w)(∂1f)(w) (∂1f)

2(w)

)
.

(44)
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Edge and corner detection

Remark 1. Fix a direction by choosing r ∈ R2 with |r| = 1 and consider the
kv-weighted squared projection of the gradient of the digital image:

Pr(v) =
∑

w∈N(v)

kv(w)|Aw·(v) r|2 (45)

=
∑

w∈N(v)

kv(w) rTAT
w·(v)Aw·(v) r (46)

= rT

 ∑
w∈N(v)

kv(w)AT
w·(v)Aw·(v)

 r (47)

= rTS(v) r (48)

With the spectral decomposition

S(v) = σ1(v)s1(v)s
T
1 (v) + σ2(v)s2(v)s

T
2 (v) (49)

we obtain

Pr(v) = rT
(
σ1(v)s1(v)s

T
1 (v) + σ2(v)s2(v)s

T
2 (v)

)
r (50)

= σ1(v)|s1(v) · r|2 + σ2(v)|s2(v) · r|2 . (51)
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Edge and corner detection

Remark 2.

▶ If σ1 = σ2 = 0, we have Pr(v) = 0 for any direction r. I.e. the image is
constant.

▶ If σ1 > 0 and σ2 = 0, we can choose a direction r such that Pr(v) = 0.
I.e. the gradient of the image is non-zero and constant.

▶ If σ1, σ2 > 0, we cannot choose r such that Pr(v) = 0. I.e. the gradient of
the image varies across N(v).
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Edge and corner detection

Definition 21. Let V the set of pixels of a digital image, let S : V → R2×2 such
that for any v ∈ V , S(v) is the structure tensor of the image at pixel v, and let
σ1(v) ≥ σ2(v) ≥ 0 be the eigenvalues of S(v). Harris’ corner detector2 wrt. a
neighborhood function N : V → 2V refers to the function φNMS ◦ σ2.

2C. Harris and M. Stephens. A Combined Corner and Edge Detector. Alvey Vision Conference.
Vol. 15. 1988


