Lucas Fabian Naumann, David Stein, Bjoern Andres

Machine Learning for Computer Vision TU Dresden

https://mlcv.cs.tu-dresden.de/courses/25-winter/ml1/

Winter Term 2025/2026

https://mlcv.cs.tu-dresden.de/courses/25-winter/ml1/

- ► Course consisting of
 - ► lectures in TRE/PHYS/E on Fridays, 9:20–10:50
 - exercise groups starting October 21st

In VMB/0302/U on Tuesdays, 16:40–18:10 In APB/E001/U on Thursdays, 16:40–18:10 on Fridays, 14:50–16:20 In APB/E001/U on Fridays, 16:40–18:10 Online (see OPAL) on Thursdays, 16:40–18:10

- self-study
- final examination (covering lectures and exercises).
- ► Registration:
 - ► All participating students need to register through OPAL
 - All participating students enrolled in the study program Computational Modeling and Simulation need to register additionally via CampusNet.
- ► No recordings/reproductions of the lectures or exercises!

Machine Learning is an area of computer science focused on the research of mathematical models and algorithms for analyzing, understanding and interpreting data, and for deciding and acting based on data. It

- ▶ poses challenging problems
- combines insights and methods from
 - mathematics (esp. combinatorics, optimization, probability theory, statistics)
 - ► computer science (esp. algorithms, complexity, software engineering)
- ▶ provides an opportunity for applying analytical and engineering skills
- ► has impact on applications (scientific, medical, robotic, consumer)

This introductory course focuses on machine learning problems and algorithms. It consists of three main parts:

Supervised learning

- ► Binary decision trees
- ► Disjunctive normal forms
- ► Linear functions
- ► Composite functions (i.e. deep learning)
- ► Transformers (with attention)

Unsupervised learning

- Partitioning (i.e. clustering of sets)
- Ordering
- ► Classifying with multiple labels

Structured learning

- ► Conditional graphical models
- ► Message passing algorithms
- ► Pseudo-Boolean optimization

Linear and integer optimization for machine learning

4/8

Exercises only!

Prerequisites:

- ► Mathematics
 - ► Linear algebra
 - ► Multivariate calculus (basics)
 - ► Probability theory (basics)
- ► Computer Science
 - ► Algorithms and data structures (basics)
 - ► Theoretical computer science (basics of complexity theory)

- ► Textbooks:
 - Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press 2012
 - ► Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, Jonathan Taylor. An Introduction to Statistical Learning. Springer 2023
 - Christopher M. Bishop, Hugh Bishop. Deep Learning: Foundations and Concepts. Springer 2024
 - Marc Peter Deisenroth. Mathematics for Machine Learning. Cambridge University Press 2020
- ► Scholarly journals (selection):
 - ► Journal of Machine Learning Research (JMLR)
 - ► Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
 - ► Transactions on Machine Learning Research (TMLR)
- ► Academic conferences (selection):
 - ► International Conference on Machine Learning (ICML)
 - ► Neural Information Processing Systems (NeurIPS)
 - ► International Conference on Learning Representations (ICLR)

https://mlcv.cs.tu-dresden.de/teaching.html

Related courses we are offering this term:

- ► Computer Vision I BEY/0E40/H (George-Bähr-Str. 1), Mondays, 11:10–12:40
- ► Research Projects
 APB-2026, Mondays, 14:50–16:20. Kick-off meeting: October 20th
 Creditable to INF-25-MA-FP, INF-PM-FPG, INF-PM-FPA and CMS-PRO

Notation:

- ▶ Considering that $0 = \emptyset$ and for any $m \in \mathbb{N}$: $m = \{0, \dots, m-1\}$, we may write $j \in m$ instead of $j \in \{0, \dots, m-1\}$.
- \blacktriangleright For any finite set A, let |A| denote the number of elements of A.
- For any set A, let 2^A denote the power set of A.
- ▶ For any set A and any $m \in \mathbb{N}_0$, let $\binom{A}{m}$ denote the set of all m-elementary subsets of A, i.e. $\binom{A}{m} = \{B \in 2^A \colon |B| = m\}$.
- For any sets A, B, let B^A denote the set of all maps from A to B. Moreover, let AB be shorthand for the ordered pair (A, B).
- For any $f \in B^A$, any $a \in A$ and any $b \in B$, we may write b = f(a) or $b = f_a$ instead of $(a,b) \in f$.
- ▶ Let $\langle \cdot, \cdot \rangle$ denote the standard inner product, and let $\| \cdot \|$ denote the l_2 -norm.
- ▶ Given any set J and, for any $j \in J$, a set S_j , we denote by $\prod_{j \in J} S_j$ the Cartesian product of the family $\{S_j\}_{j \in J}$, i.e.

$$\prod_{j \in J} S_j = \left\{ f \colon J \to \bigcup_{j \in J} S_j \,\middle|\, \forall j \in J \colon f(j) \in S_j \right\} . \tag{1}$$