# Machine Learning I

### Lucas Fabian Naumann, David Stein, Bjoern Andres

Machine Learning for Computer Vision TU Dresden



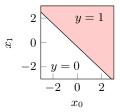
https://mlcv.cs.tu-dresden.de/courses/25-winter/ml1/

Winter Term 2025/2026

**Contents.** This part of the course introduces the notion of labeled data, the supervised learning problem, the separation problem, the separability problem and the inference problem.

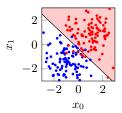
**Example:** A medical test with  $n \in \mathbb{N}$  design parameters  $\theta \in \Theta = \mathbb{R}^n$  measures  $m \in \mathbb{N}$  quantities  $x \in X = \mathbb{R}^m$  and indicates by  $y \in Y = \{0,1\}$  whether the measurement x is considered to be healthy (y=0) or pathological (y=1).

$$X \xrightarrow{g_\theta} Y$$



**Example:** A medical test with  $n \in \mathbb{N}$  design parameters  $\theta \in \Theta = \mathbb{R}^n$  measures  $m \in \mathbb{N}$  quantities  $x \in X = \mathbb{R}^m$  and indicates by  $y \in Y = \{0,1\}$  whether the measurement x is considered to be healthy (y=0) or pathological (y=1).

$$X \xrightarrow{g_{\theta}} Y$$



Informally, **supervised learning** is the problem of finding, in a family  $g:\Theta\to Y^X$ , one function  $g_\theta:X\to Y$  that minimizes a weighted sum of two objectives:

- $ightharpoonup g_{\theta}$  deviates little from a finite set  $\{(x_s,y_s)\}_{s\in S}$  of input-output-pairs, called labeled data
- $g_{\theta}$  has low complexity, as quantified by a function  $R:\Theta\to\mathbb{R}^+_0$ , called a regularizer

In this course, we concentrate exclusively on the special case where Y is finite. To begin with, we even concentrate on the case where  $Y=\{0,1\}$ , i.e., learning how to make yes/no decisions. Hence, we consider a family  $g\colon\Theta\to\{0,1\}^X$ .

We allow ourselves to take a detour by not optimizing over a family  $g:\Theta \to \{0,1\}^X$  directly but instead optimizing over a family  $f:\Theta \to \mathbb{R}^X$  and defining g wrt. f via a function  $L:\mathbb{R}\times\{0,1\}\to\mathbb{R}_0^+$ , called a loss function, such that

$$\forall \theta \in \Theta \ \forall x \in X \colon \quad g_{\theta}(x) \in \underset{\hat{y} \in \{0,1\}}{\operatorname{argmin}} \ L(f_{\theta}(x), \hat{y}) \ . \tag{1}$$

#### Example: 0-1-loss

$$\forall r \in \mathbb{R} \ \forall \hat{y} \in \{0, 1\} \colon \quad L(r, \hat{y}) = \begin{cases} 0 & r > 0 \land \hat{y} = 1 \\ 0 & r \le 0 \land \hat{y} = 0 \\ 1 & \text{otherwise} \end{cases}$$
 (2)

Next, we define the supervised learning problem rigorously.

**Definition.** For any finite, non-empty set S, called a set of **samples**, any  $X \neq \emptyset$ , called an **feature space** and any  $x: S \to X$ , the tuple (S, X, x) is called **unlabeled data**.

For any  $y: S \to \{0,1\}$ , given in addition and called a **labeling**, the tuple (S,X,x,y) is called **labeled data**.

**Definition.** For any labeled data T=(S,X,x,y), any  $\Theta\neq\emptyset$  and  $f:\Theta\to\mathbb{R}^X$ , any  $R:\Theta\to\mathbb{R}^+_0$ , called a **regularizer**, any  $L:\mathbb{R}\times\{0,1\}\to\mathbb{R}^+_0$ , called a **loss function**, and any  $\lambda\in\mathbb{R}^+_0$ :

► The instance of the **supervised learning problem** has the form

$$\inf_{\theta \in \Theta} \lambda R(\theta) + \sum_{s \in S} L(f_{\theta}(x_s), y_s)$$
 (3)

► The instance of the **separation problem** has the form

$$\inf_{\theta \in \Theta} R(\theta) \tag{4}$$

subject to 
$$\forall s \in S : L(f_{\theta}(x_s), y_s) = 0$$
 (5)

▶ The instance of the **separability problem** consists in deciding whether there exists a  $\theta \in \Theta$  such that

$$R(\theta) \le m \tag{6}$$

$$\forall s \in S: \quad L(f_{\theta}(x_s), y_s) = 0 \tag{7}$$

**Definition.** For any unlabeled data T=(S,X,x), any  $\hat{f}:X\to\mathbb{R}$  and any  $L:\mathbb{R}\times\{0,1\}\to\mathbb{R}^+_0$ , the instance of the **inference problem** wrt.  $T,\hat{f}$  and L is defined as

$$\min_{y \in \{0,1\}^S} \sum_{s \in S} L(\hat{f}(x_s), y_s) \tag{8}$$

**Lemma.** The solutions to the inference problem are the  $y:S \to \{0,1\}$  such that

$$\forall s \in S \colon \quad y_s \in \underset{\hat{y} \in \{0,1\}}{\operatorname{argmin}} \ L(\hat{f}(x_s), \hat{y}) \ . \tag{9}$$

Moreover, if  $\hat{f}(X) \subseteq \{0,1\}$  and L is the 0-1-loss, then

$$\forall s \in S \colon \quad y_s = \hat{f}(x_s) \ . \tag{10}$$

### Summary.

- ► The supervised learning problem is an optimization problem. It consists in finding, in a family of functions, one function that minimizes a weighted sum of two objectives:
  - 1. It deviates little from given labeled data, as quantified by a loss function
  - 2. It has low complexity, as quantified by a regularizer.
- ► The separation problem is an optimization problem. It consists in finding a function in the family that minimizes the regularizer, such that the loss wrt. given labeled data is zero.
- ► The separability problem is a decision problem. It consists in deciding whether there exists a function in the family with loss zero for which the regularizer does not exceed a given bound.