Machine Learning I

Lucas Fabian Naumann, David Stein, Bjoern Andres

Machine Learning for Computer Vision TU Dresden

https://mlcv.cs.tu-dresden.de/courses/25-winter/ml1/

Winter Term 2025/2026

Contents. This part of the course is about a special case of supervised learning: the supervised learning of **composite functions**, aka. **supervised deep learning**.

- ► We define a family of (composite) functions in terms a **compute graph**.
- ▶ We describe two algorithms for computing partial derivatives (if these exist) of such functions, **forward propagation** and **backward propagation**.
- ▶ In the exercises, we compare these algorithms.

Notation. Let G = (V, E) a digraph.

▶ For any $v \in V$, let

$$P_v = \{u \in V \mid (u, v) \in E\}$$
 the set of parents of v (1)

$$C_v = \{ w \in V \mid (v, w) \in E \}$$
 the set of **children** of v . (2)

▶ For any $u, v \in V$, let $\mathcal{P}(u, v)$ denote the set of all uv-paths of G. (Any path is a subgraph. For any node u, the uu-path $(\{u\}, \emptyset)$ exists.)

Let G be acyclic.

ightharpoonup For any $v \in V$, let

$$A_v = \{u \in V \mid \mathcal{P}(u, v) \neq \emptyset\} \setminus \{v\}$$
 the set of ancestors of v (3)

$$D_v = \{w \in V \mid \mathcal{P}(v,w) \neq \emptyset\} \setminus \{v\}$$
 the set of **descendants** of v . (4)

Definition. A tuple $(V, D, D', E, \Theta, \{g_{v\theta} \colon \mathbb{R}^{P_v} \to \mathbb{R}\}_{v \in (D \cup D') \setminus V, \theta \in \Theta})$ is called a **compute graph**, iff the following conditions hold:

- ▶ $G = (V \cup D \cup D', E)$ is an acyclic digraph.
- For any $v \in V$, called an **input node**, $P_v = \emptyset$.
- For any $v \in D'$, called an **output node**, $C_v = \emptyset$.
- ▶ For any $v \in D$, called a **hidden node**, $P_v \neq \emptyset$ and $C_v \neq \emptyset$.

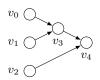
Definition. For any compute graph

 $(V, D, D', E, \Theta, \{g_{v\theta} : \mathbb{R}^{P_v} \to \mathbb{R}\}_{v \in (D \cup D') \setminus V, \theta \in \Theta})$, any $v \in V \cup D \cup D'$ and any $\theta \in \Theta$, let $\alpha_{v\theta} : \mathbb{R}^V \to \mathbb{R}$ such that for all $\hat{x} \in \mathbb{R}^V$:

$$\alpha_{v\theta}(\hat{x}) = \begin{cases} \hat{x}_v & \text{if } v \in V \\ g_{v\theta}(\alpha_{P_v\theta}(\hat{x})) & \text{otherwise} \end{cases}$$
 (5)

For any $\theta \in \Theta$ let $f_{\theta} \colon \mathbb{R}^{V} \to \mathbb{R}^{D'}$ such that $f_{\theta} = \alpha_{D'\theta}$. We call $\alpha_{v\theta}(\hat{x})$ the **activation** of v for **input** \hat{x} and **parameters** θ . We call $f_{\theta}(\hat{x})$ the **output** of the compute graph for input \hat{x} and parameters θ .

Example. Consider $V = \{v_0, v_1, v_2\}$, $D = \{v_3\}$, $D' = \{v_4\}$ and the edge set E of the digraph depicted below.



Consider, in addition, $\Theta = \{\theta_0, \theta_1\}$ and

$$g_{v_3\theta} \colon \mathbb{R}^{\{v_0, v_1\}} \to \mathbb{R} \colon x \mapsto x_{v_0} + \theta_0 x_{v_1}$$
 (6)

$$g_{v_4\theta}: \quad \mathbb{R}^{\{v_2, v_3\}} \to \mathbb{R}: \quad x \mapsto x_{v_2} + x_{v_3}^{\theta_1}$$
 (7)

The compute graph $(V,D,D',E,\Theta,\{g_{v_3\theta},g_{v_4\theta}\})$ defines the function

$$f_{\theta} : \mathbb{R}^{V} \to \mathbb{R}^{D'} : x \mapsto x_{v_{2}} + (x_{v_{0}} + \theta_{0} x_{v_{1}})^{\theta_{1}}$$
 (8)

Definition. Let $(V,D,D',E,\Theta,\{g_{v\theta}:\mathbb{R}^{P_v}\to\mathbb{R}\}_{v\in(D\cup D')\setminus V,\theta\in\Theta})$ a compute graph with |D'|=1 and $\Theta=\mathbb{R}^J$ for some finite set $J\neq\emptyset$. Let f be the family of functions defined by this compute graph. The l_2 -regularized logistic regression problem wrt. f, labeled data $T=(S,\mathbb{R}^V,x,y)$ and $\sigma\in\mathbb{R}^+$ has the form

$$\min_{\theta \in \mathbb{R}^J} \quad \frac{1}{|S|} \sum_{s \in S} \left(-y_s f_{\theta}(x_s) + \log\left(1 + 2^{f_{\theta}(x)}\right) \right) + \frac{\log e}{2\sigma^2} \|\theta\|^2 \quad . \tag{9}$$

Remark.

- \blacktriangleright (9) generalizes l_2 -regularized linear logistic regression
- ▶ (9) can be non-convex in case f is not linear in θ .
- ▶ If the partial derivative of f wrt. θ_j exists for all $j \in J$, we can search for a local minimum using a steepest descent algorithm.
- ▶ To do so, we describe two techniques for computing $\nabla_{\theta} f$, forward propagation and backward propagation.

Lemma. Let $j \in J$. For any $v \in V$: $\frac{\partial \alpha_{v\theta}}{\partial \theta_j} = 0$. For any $v \in (D \cup D') \setminus V$:

$$\frac{\partial \alpha_{v\theta}}{\partial \theta_j} = \sum_{u \in (A_v \cup \{v\}) \setminus V} \frac{\partial g_{u\theta}}{\partial \theta_j} \, \Delta_{uv} \tag{10}$$

with

$$\Delta_{uv} := \sum_{(V', E') \in \mathcal{P}(u, v)} \prod_{(u', v') \in E'} \frac{\partial g_{v'\theta}}{\partial \alpha_{u'\theta}} . \tag{11}$$

Remark. For any node u: $\Delta_{uu}=1$. For any u,v with $\mathcal{P}(u,v)=\emptyset$: $\Delta_{uv}=0$. Proof (idea).

$$\frac{\partial \alpha_{v\theta}}{\partial \theta_{j}} = \frac{\partial g_{v\theta}}{\partial \theta_{j}} + \sum_{u \in P_{v}} \frac{\partial g_{v\theta}}{\partial \alpha_{u\theta}} \frac{\partial \alpha_{u\theta}}{\partial \theta_{j}} \tag{12}$$

$$= \frac{\partial g_{v\theta}}{\partial \theta_{j}} + \sum_{u \in P_{v}} \frac{\partial g_{v\theta}}{\partial \alpha_{u\theta}} \frac{\partial g_{u\theta}}{\partial \theta_{j}} + \sum_{u \in P_{v}} \sum_{u' \in P_{u}} \frac{\partial g_{v\theta}}{\partial \alpha_{u\theta}} \frac{\partial g_{u\theta}}{\partial \alpha_{u'\theta}} \frac{\partial \alpha_{u'\theta}}{\partial \theta_{j}}$$

$$= \text{repeated application (12)}$$

$$= \sum_{u \in (A_{v} \cup \{v\}) \setminus V} \frac{\partial g_{u\theta}}{\partial \theta_{j}} \sum_{(V', E') \in P(u, v)} \prod_{(u', v') \in E'} \frac{\partial g_{v'\theta}}{\partial \alpha_{u'\theta}}$$

Lemma (forward propagation). For all nodes $u \neq w$ such that $\mathcal{P}(u, w) \neq \emptyset$:

$$\Delta_{uw} = \sum_{v \in P_w} \frac{\partial g_{w\theta}}{\partial \alpha_{v\theta}} \, \Delta_{uv} \tag{13}$$

Proof.

$$\Delta_{uw} = \sum_{(V',E')\in\mathcal{P}(u,w)} \prod_{(u',v')\in E'} \frac{\partial g_{v'\theta}}{\partial \alpha_{u'\theta}}$$

$$= \sum_{v\in P_w} \sum_{(V'',E'')\in\mathcal{P}(u,v)} \prod_{(u',v')\in E''\cup\{v,w\}} \frac{\partial g_{v'\theta}}{\partial \alpha_{u'\theta}}$$

$$= \sum_{v\in P_w} \frac{\partial g_{w\theta}}{\partial \alpha_{v\theta}} \sum_{(V'',E'')\in\mathcal{P}(u,v)} \prod_{(u',v')\in E''} \frac{\partial g_{v'\theta}}{\partial \alpha_{u'\theta}}$$

$$= \sum_{v\in P_w} \frac{\partial g_{w\theta}}{\partial \alpha_{v\theta}} \Delta_{uv}$$

8/15

The forward propagation algorithm computes Δ_{uw} for one node u and all nodes w. It is defined wrt. an arbitrary partial order $<_P$ of the nodes such that

$$\forall w \in D \cup D' \quad \forall w' \in P_w \colon \quad w' <_P w . \tag{14}$$

```
Input: Compute graph (V, D, D', E, \Theta, \{g_{v\theta} : \mathbb{R}^{P_v} \to \mathbb{R}\}_{v \in (D \cup D') \setminus V, \theta \in \Theta})
Node u \in V \cup D \cup D'

for w ordered by <_P

if w = u

\Delta_{uw} := 1
else if \mathcal{P}(u, w) = \emptyset
\Delta_{uw} := 0
else
\Delta_{uw} := \sum_{v \in P_w} \frac{\partial g_{w\theta}}{\partial \alpha_{w\theta}} \Delta_{uv}
(13)
```

Lemma (backward propagation). For all nodes $u \neq w$ such that $\mathcal{P}(u, w) \neq \emptyset$:

$$\Delta_{uw} = \sum_{v \in C_u} \frac{\partial g_{v\theta}}{\partial \alpha_{u\theta}} \, \Delta_{vw} \tag{15}$$

Proof.

$$\Delta_{uw} = \sum_{(V',E')\in\mathcal{P}(u,w)} \prod_{(u',v')\in E'} \frac{\partial g_{v'\theta}}{\partial \alpha_{u'\theta}}$$

$$= \sum_{v\in C_u} \sum_{(V'',E'')\in\mathcal{P}(v,w)} \prod_{(u',v')\in E''\cup\{(u,v)\}} \frac{\partial g_{v'\theta}}{\partial \alpha_{u'\theta}}$$

$$= \sum_{v\in C_u} \frac{\partial g_{v\theta}}{\partial \alpha_{u\theta}} \sum_{(V'',E'')\in\mathcal{P}(v,w)} \prod_{(u',v')\in E''} \frac{\partial g_{v'\theta}}{\partial \alpha_{u'\theta}}$$

$$= \sum_{v\in C_u} \frac{\partial g_{v\theta}}{\partial \alpha_{u\theta}} \Delta_{vw}$$

_

The backward propagation algorithm computes Δ_{uw} for one node w and all nodes u. It is defined wrt. an arbitrary partial order $<_C$ of the nodes such that

$$\forall u \in V \cup D \quad \forall v \in C_u : \quad v <_C u . \tag{16}$$

```
Input: Compute graph (V, D, D', E, \Theta, \{g_{v\theta} : \mathbb{R}^{P_v} \to \mathbb{R}\}_{v \in (D \cup D') \setminus V, \theta \in \Theta}) Node w \in V \cup D \cup D'

for u ordered by <_C (16)

if u = w
\Delta_{uw} := 1
else if \mathcal{P}(u, w) = \emptyset
\Delta_{uw} := 0
else
\Delta_{uw} := \sum_{v \in C_u} \frac{\partial g_{v\theta}}{\partial \alpha_{v\theta}} \Delta_{vw} (15)
```

Attention

The main idea is to define a particular family f of functions f_{θ} we can learn:

Definition. For

- ightharpoonup any labeled data (S, X, x, y),
- ▶ any non-empty Θ', Θ'' and $\Theta := \Theta' \times \Theta''$,

$$ightharpoonup$$
 any $q \colon \Theta' \to \mathbb{R}^X$,

i.e.
$$g_{\theta'}: X \to \mathbb{R}$$
,

$$ightharpoonup$$
 any $\beta \colon \Theta'' \to \mathbb{R}^{X \times X}$.

i.e.
$$\beta_{\theta''}: X \times X \to \mathbb{R}$$
,

and $\alpha \colon \Theta'' \to (0,1)^{X \times X}$ such that for all $\theta'' \in \Theta''$ and all $x, x' \in X$,

$$\alpha_{\theta''}(x,x') := \frac{e^{\beta_{\theta''}(x,x')}}{\sum_{s \in S} e^{\beta_{\theta''}(x,x_s)}} = \operatorname{softmax}_S(\beta_{\theta''}(x,\cdot))(x') \ ,$$

define for any $(\theta', \theta'') = \theta \in \Theta$ and any $x \in X$:

$$f_{\theta}(x) = \sum_{s \in S} \alpha_{\theta''}(x, x_s) g_{\theta'}(x_s) .$$

Remark. Instead of mapping a feature vector $x \in X$ to the real number $g_{\theta'}(x)$, we relate x to every sample x_s with $s \in S$ by $\alpha_{\theta''}(x, x_s)$ and average the real numbers $g_{\theta'}(x_s)$ obtained for these samples, weighted by $\alpha_{\theta''}(x, x_s)$.

Attention

From now on, we concentrate on the following special case.

Example. $X = \mathbb{R}^J$ with $J \neq \emptyset$ finite. Moreover, $\Theta' = \mathbb{R}^J$ and for all $x \in X$ and all $\theta' \in \Theta'$:

$$g_{\theta'}(x) = \langle \theta', x \rangle$$
.

Remark.

$$f_{\theta}(x) = \sum_{s \in S} \alpha_{\theta''}(x, x_s) g_{\theta'}(x_s)$$
$$= \sum_{s \in S} \alpha_{\theta''}(x, x_s) \langle \theta', x_s \rangle$$
$$= \left\langle \theta', \sum_{s \in S} \alpha_{\theta''}(x, x_s) x_s \right\rangle$$

Attention

Example. a) Dot product attention: $\Theta'' = \Theta^q \times \Theta^k$ with $\Theta^q = \mathbb{R}^{K \times J}$ and $\Theta^k = \mathbb{R}^{K \times J}$ with $K \neq \emptyset$ finite. Moreover, for all $(\theta^q, \theta^k) = \theta'' \in \Theta''$ and all $x, x' \in X$:

$$\beta_{\theta''}(x, x') = \langle \theta^q x, \theta^k x' \rangle$$

b) Mahalanobis distance attention: $\Theta'' = \mathbb{R}^{K \times J}$ with $K \neq \emptyset$ finite. Moreover, for all $\theta'' \in \Theta''$ and all $x, x' \in X$:

$$\beta_{\theta''}(x, x') = -\|\theta''(x - x')\|_{2}^{2}$$

