
1/15

Machine Learning I

Lucas Fabian Naumann, David Stein, Bjoern Andres

Machine Learning for Computer Vision
TU Dresden

https://mlcv.cs.tu-dresden.de/courses/25-winter/ml1/

Winter Term 2025/2026

https://mlcv.cs.tu-dresden.de/courses/25-winter/ml1/

2/15

Learning of composite functions (deep learning)

Contents. This part of the course is about a special case of supervised learning:
the supervised learning of composite functions, aka. supervised deep learning.

▶ We define a family of (composite) functions in terms a compute graph.

▶ We describe two algorithms for computing partial derivatives (if these exist)
of such functions, forward propagation and backward propagation.

▶ In the exercises, we compare these algorithms.

3/15

Learning of composite functions (deep learning)

Notation. Let G = (V,E) a digraph.

▶ For any v ∈ V , let

Pv = {u ∈ V | (u, v) ∈ E} the set of parents of v (1)

Cv = {w ∈ V | (v, w) ∈ E} the set of children of v . (2)

▶ For any u, v ∈ V , let P(u, v) denote the set of all uv-paths of G. (Any
path is a subgraph. For any node u, the uu-path ({u}, ∅) exists.)

Let G be acyclic.

▶ For any v ∈ V , let

Av = {u ∈ V | P(u, v) ̸= ∅} \ {v} the set of ancestors of v (3)

Dv = {w ∈ V | P(v, w) ̸= ∅} \ {v} the set of descendants of v . (4)

4/15

Learning of composite functions (deep learning)

Definition. A tuple (V,D,D′, E,Θ, {gvθ : RPv → R}v∈(D∪D′)\V,θ∈Θ) is called
a compute graph, iff the following conditions hold:

▶ G = (V ∪D ∪D′, E) is an acyclic digraph.

▶ For any v ∈ V , called an input node, Pv = ∅.
▶ For any v ∈ D′, called an output node, Cv = ∅.
▶ For any v ∈ D, called a hidden node, Pv ̸= ∅ and Cv ̸= ∅.

Definition. For any compute graph
(V,D,D′, E,Θ, {gvθ : RPv → R}v∈(D∪D′)\V,θ∈Θ), any v ∈ V ∪D ∪D′ and any
θ ∈ Θ, let αvθ : RV → R such that for all x̂ ∈ RV :

αvθ(x̂) =

{
x̂v if v ∈ V

gvθ(αPvθ(x̂)) otherwise
. (5)

For any θ ∈ Θ let fθ : RV → RD′
such that fθ = αD′θ.

We call αvθ(x̂) the activation of v for input x̂ and parameters θ.
We call fθ(x̂) the output of the compute graph for input x̂ and parameters θ.

5/15

Learning of composite functions (deep learning)

Example. Consider V = {v0, v1, v2}, D = {v3}, D′ = {v4} and the edge set
E of the digraph depicted below.

v0

v1

v2

v3
v4

Consider, in addition, Θ = {θ0, θ1} and

gv3θ : R{v0,v1} → R : x 7→ xv0 + θ0xv1 (6)

gv4θ : R{v2,v3} → R : x 7→ xv2 + xθ1
v3 . (7)

The compute graph (V,D,D′, E,Θ, {gv3θ, gv4θ}) defines the function

fθ : RV → RD′
: x 7→ xv2 + (xv0 + θ0 xv1)

θ1 . (8)

6/15

Learning of composite functions (deep learning)

Definition. Let (V,D,D′, E,Θ, {gvθ : RPv → R}v∈(D∪D′)\V,θ∈Θ) a compute
graph with |D′| = 1 and Θ = RJ for some finite set J ̸= ∅. Let f be the family
of functions defined by this compute graph. The l2-regularized logistic
regression problem wrt. f , labeled data T = (S,RV , x, y) and σ ∈ R+ has the
form

min
θ∈RJ

1

|S|
∑
s∈S

(
−ysfθ(xs) + log

(
1 + 2fθ(x)

))
+

log e

2σ2
∥θ∥2 . (9)

Remark.

▶ (9) generalizes l2-regularized linear logistic regression

▶ (9) can be non-convex in case f is not linear in θ.

▶ If the partial derivative of f wrt. θj exists for all j ∈ J , we can search for a
local minimum using a steepest descent algorithm.

▶ To do so, we describe two techniques for computing ∇θf , forward
propagation and backward propagation.

7/15

Learning of composite functions (deep learning)

Lemma. Let j ∈ J . For any v ∈ V : ∂αvθ
∂θj

= 0. For any v ∈ (D ∪D′) \ V :

∂αvθ

∂θj
=

∑
u∈(Av∪{v})\V

∂guθ
∂θj

∆uv (10)

with

∆uv :=
∑

(V ′,E′)∈P(u,v)

∏
(u′,v′)∈E′

∂gv′θ

∂αu′θ
. (11)

Remark. For any node u: ∆uu = 1. For any u, v with P(u, v) = ∅: ∆uv = 0.

Proof (idea).

∂αvθ

∂θj
=

∂gvθ
∂θj

+
∑
u∈Pv

∂gvθ
∂αuθ

∂αuθ

∂θj
(12)

=
∂gvθ
∂θj

+
∑
u∈Pv

∂gvθ
∂αuθ

∂guθ
∂θj

+
∑
u∈Pv

∑
u′∈Pu

∂gvθ
∂αuθ

∂guθ
∂αu′θ

∂αu′θ

∂θj

= repeated application (12)

=
∑

u∈(Av∪{v})\V

∂guθ
∂θj

∑
(V ′,E′)∈P(u,v)

∏
(u′,v′)∈E′

∂gv′θ

∂αu′θ

8/15

Learning of composite functions (deep learning)

Lemma (forward propagation). For all nodes u ̸= w such that P(u,w) ̸= ∅:

∆uw =
∑
v∈Pw

∂gwθ

∂αvθ
∆uv (13)

Proof.

∆uw =
∑

(V ′,E′)∈P(u,w)

∏
(u′,v′)∈E′

∂gv′θ

∂αu′θ

=
∑
v∈Pw

∑
(V ′′,E′′)∈P(u,v)

∏
(u′,v′)∈E′′∪{v,w}

∂gv′θ

∂αu′θ

=
∑
v∈Pw

∂gwθ

∂αvθ

∑
(V ′′,E′′)∈P(u,v)

∏
(u′,v′)∈E′′

∂gv′θ

∂αu′θ

=
∑
v∈Pw

∂gwθ

∂αvθ
∆uv

9/15

Learning of composite functions (deep learning)

The forward propagation algorithm computes ∆uw for one node u and all
nodes w. It is defined wrt. an arbitrary partial order <P of the nodes such that

∀w ∈ D ∪D′ ∀w′ ∈ Pw : w′ <P w . (14)

Input:
Compute graph (V,D,D′, E,Θ, {gvθ : RPv → R}v∈(D∪D′)\V,θ∈Θ)
Node u ∈ V ∪D ∪D′

for w ordered by <P (14)
if w = u

∆uw := 1
else if P(u,w) = ∅

∆uw := 0
else

∆uw :=
∑

v∈Pw

∂gwθ
∂αvθ

∆uv (13)

10/15

Learning of composite functions (deep learning)

Lemma (backward propagation). For all nodes u ̸= w such that P(u,w) ̸= ∅:

∆uw =
∑
v∈Cu

∂gvθ
∂αuθ

∆vw (15)

Proof.

∆uw =
∑

(V ′,E′)∈P(u,w)

∏
(u′,v′)∈E′

∂gv′θ

∂αu′θ

=
∑
v∈Cu

∑
(V ′′,E′′)∈P(v,w)

∏
(u′,v′)∈E′′∪{(u,v)}

∂gv′θ

∂αu′θ

=
∑
v∈Cu

∂gvθ
∂αuθ

∑
(V ′′,E′′)∈P(v,w)

∏
(u′,v′)∈E′′

∂gv′θ

∂αu′θ

=
∑
v∈Cu

∂gvθ
∂αuθ

∆vw

11/15

Learning of composite functions (deep learning)

The backward propagation algorithm computes ∆uw for one node w and all
nodes u. It is defined wrt. an arbitrary partial order <C of the nodes such that

∀u ∈ V ∪D ∀v ∈ Cu : v <C u . (16)

Input:
Compute graph (V,D,D′, E,Θ, {gvθ : RPv → R}v∈(D∪D′)\V,θ∈Θ)
Node w ∈ V ∪D ∪D′

for u ordered by <C (16)
if u = w

∆uw := 1
else if P(u,w) = ∅

∆uw := 0
else

∆uw :=
∑

v∈Cu

∂gvθ
∂αuθ

∆vw (15)

12/15

Attention

The main idea is to define a particular family f of functions fθ we can learn:

Definition. For

▶ any labeled data (S,X, x, y),

▶ any non-empty Θ′,Θ′′ and Θ := Θ′ ×Θ′′,

▶ any g : Θ′ → RX , i.e. gθ′ : X → R,
▶ any β : Θ′′ → RX×X , i.e. βθ′′ : X ×X → R,

and α : Θ′′ → (0, 1)X×X such that for all θ′′ ∈ Θ′′ and all x, x′ ∈ X,

αθ′′(x, x
′) :=

eβθ′′ (x,x
′)∑

s∈S eβθ′′ (x,xs)
= softmaxS(βθ′′(x, ·))(x′) ,

define for any (θ′, θ′′) = θ ∈ Θ and any x ∈ X:

fθ(x) =
∑
s∈S

αθ′′(x, xs) gθ′(xs) .

Remark. Instead of mapping a feature vector x ∈ X to the real number gθ′(x),
we relate x to every sample xs with s ∈ S by αθ′′(x, xs) and average the real
numbers gθ′(xs) obtained for these samples, weighted by αθ′′(x, xs).

13/15

Attention

From now on, we concentrate on the following special case.

Example. X = RJ with J ̸= ∅ finite. Moreover, Θ′ = RJ and for all x ∈ X and
all θ′ ∈ Θ′:

gθ′(x) = ⟨θ′, x⟩ .

Remark.

fθ(x) =
∑
s∈S

αθ′′(x, xs) gθ′(xs)

=
∑
s∈S

αθ′′(x, xs) ⟨θ′, xs⟩

=

〈
θ′,

∑
s∈S

αθ′′(x, xs)xs

〉

14/15

Attention

Example. a) Dot product attention: Θ′′ = Θq ×Θk with Θq = RK×J and
Θk = RK×J with K ̸= ∅ finite. Moreover, for all (θq, θk) = θ′′ ∈ Θ′′ and all
x, x′ ∈ X:

βθ′′(x, x
′) = ⟨θqx, θkx′⟩

b) Mahalanobis distance attention: Θ′′ = RK×J with K ̸= ∅ finite. Moreover,
for all θ′′ ∈ Θ′′ and all x, x′ ∈ X:

βθ′′(x, x
′) = −∥θ′′(x− x′)∥22

15/15

xs1

θqxs1

θkxs1

θ′xs1

xs2

θqxs2

θkxs2

θ′xs2

β
θ′′

(
xs1

, xs1

)

β
θ′′

(
xs1

, xs2

)

β
θ′′

(
xs2

, xs1

)

β
θ′′

(
xs2

, xs2

)

α
θ′′

(
xs1

, xs1

)

α
θ′′

(
xs1

, xs2

)

α
θ′′

(
xs2

, xs1

)

α
θ′′

(
xs2

, xs2

)

α
θ′′

(
xs1

, xs1

)
θ′xs1

α
θ′′

(
xs1

, xs2

)
θ′xs2

α
θ′′

(
xs2

, xs1

)
θ′xs1

α
θ′′

(
xs2 , xs2

)
θ′xs1

∑
s∈S

α
θ′′

(
xs1 , xs

)
θ
′
xs

fθ

(
xs1

)

∑
s∈S

α
θ′′

(
xs2 , xs

)
θ
′
xs

fθ

(
xs2

)

Attention head : RJ
′

→ RJ
′′

