
1/20

Machine Learning I

Lucas Fabian Naumann, David Stein, Bjoern Andres

Machine Learning for Computer Vision
TU Dresden

https://mlcv.cs.tu-dresden.de/courses/25-winter/ml1/

Winter Term 2025/2026

https://mlcv.cs.tu-dresden.de/courses/25-winter/ml1/

2/20

Partitioning (clustering)

Contents.

▶ This part of the course is about the problem of partitioning a set into
subsets, without knowing the number, size or any other property of the
subsets.

▶ This problem is introduced as an unsupervised learning problem
w.r.t. constrained data.

3/20

Partitioning (clustering)

Definition. A partition Π of a finite set A is a collection Π ⊆ 2A of non-empty,
pairwise disjoint subsets of A whose union is A.

Definition. An equivalence relation ≡ on A is a binary relation ≡ ⊆ A×A
that is reflexive, symmetric and transitive.

Notation. For any partition Π of A, let ≡Π the binary relation on A such that

∀a, a′ ∈ A : a ≡Π a′ ⇔ ∃U ∈ Π: a ∈ U ∧ a′ ∈ U . (1)

Lemma. For any partition Π of A, ≡Π is an equivalence relation on A.
Moreover, the map Π 7→ ≡Π is a bijection from the set of all partitions of A to
the set of all equivalence relations on A.

Lemma. The equivalence relations on A are characterized by those
y :

(
A
2

)
→ {0, 1} that satisfy the linear inequalities

∀a ∈ A ∀b ∈ A \ {a} ∀c ∈ A \ {a, b} : y{a,b} + y{b,c} − 1 ≤ y{a,c} . (2)

Proof (sketch). Relate any equivalence relation ≡ on A to the y :
(
A
2

)
→ {0, 1}

such that ∀{a, b} ∈
(
A
2

)
: y{a,b} = 1 ⇔ a ≡ b.

4/20

Partitioning (clustering)

We reduce the problem of learning and inferring equivalence relations to the
problem of learning and inferring decisions, by defining constrained data
(S,X, x, Y) with

S =
(
A
2

)
(3)

Y =
{
y :

(
A
2

)
→ {0, 1}

∣∣∣ ∀a ∈ A ∀b ∈ A \ {a} ∀c ∈ A \ {a, b} :

y{a,b} + y{b,c} − 1 ≤ y{a,c}

}
(4)

We consider a finite, non-empty set V , called a set of attributes, and the
attribute space X = RV .

We consider linear functions. Specifically, we consider Θ = RV and
f : Θ → RX such that

∀θ ∈ Θ ∀x̂ ∈ RV : fθ(x̂) =
∑
v∈V

θv x̂v = ⟨θ, x̂⟩ . (5)

5/20

Partitioning (clustering)

Xs

Ys

Z

Θv

v ∈ V s ∈ S

Probabilistic model:

▶ For any {a, b} = s ∈ S =
(
A
2

)
, let Xs be a random variable whose value is

a vector xs ∈ RV , the attribute vector of s.

▶ For any s ∈ S, let Ys be a random variable whose value is a binary number
ys ∈ {0, 1}, called the decision of joining {a, b} = s.

▶ For any v ∈ V , let Θv be a random variable whose value is a real number
θv ∈ R, a parameter of the function we seek to learn.

▶ Let Z be a random variable whose value is a subset Z ⊆ {0, 1}S called the
set of feasible decisions. For partitioning, we are interested in Z = Y, the
set characterizing equivalence relations on A.

6/20

Partitioning (clustering)

Xs

Ys

Z

Θv

v ∈ V s ∈ S

Probabilistic model: We assume the factorization

P (X,Y, Z,Θ) = P (Z | Y)
∏
s∈S

P (Ys | Xs,Θ)
∏
v∈V

P (Θv)
∏
s∈S

P (Xs) .

7/20

Partitioning (clustering)

▶ Supervised learning:

P (Θ | X,Y, Z) =
P (X,Y, Z,Θ)

P (X,Y, Z)

=
P (Z | Y)P (Y | X,Θ)P (X)P (Θ)

P (Z | X,Y)P (X,Y)

=
P (Z | Y)P (Y | X,Θ)P (X)P (Θ)

P (Z | Y)P (X,Y)

=
P (Y | X,Θ)P (X)P (Θ)

P (X,Y)

∝ P (Y | X,Θ)P (Θ)

=
∏
s∈S

P (Ys | Xs,Θ)
∏
v∈V

P (Θv)

8/20

Partitioning (clustering)

▶ Inference:

P (Y | X,Z, θ) =
P (X,Y, Z,Θ)

P (X,Z,Θ)

=
P (Z | Y)P (Y | X,Θ)P (X)P (Θ)

P (X,Z,Θ)

∝ P (Z | Y)P (Y | X,Θ)

= P (Z | Y)
∏
s∈S

P (Ys | Xs,Θ)

9/20

Partitioning (clustering)

▶ Sigmoid distribution

∀s ∈ S : pYs|Xs,Θ(1) =
1

1 + 2−fθ(xs)
(6)

−6 −4 −2 0 2 4 6
0

0.5

1

fθ(xs)

p
Y
s
|X

s
,Θ
(1
)

9/20

Partitioning (clustering)

▶ Normal distribution with σ ∈ R+:

∀v ∈ V : pΘv (θv) =
1

σ
√
2π

e−θ2v/2σ
2

(6)

−6 −4 −2 0 2 4 6

0

0.2

0.4

θv

p
Θ

v
(θ

v
)

10/20

Partitioning (clustering)

▶ Uniform distribution on a subset

∀Z ⊆ {0, 1}S ∀y ∈ {0, 1}S pZ|Y (Z, y) ∝

{
1 if y ∈ Z
0 otherwise

Note that pZ|Y (Y, y) is non-zero iff the labeling y : S → {0, 1} defines an
equivalence relation on A.

11/20

Partitioning (clustering)

Lemma. Estimating maximally probable parameters θ, given attributes x and
decisions y, i.e.,

argmax
θ∈RV

pΘ|X,Y,Z(θ, x, y,Y)

is an l2-regularized logistic regression problem.

Proof. Analogous to the case of deciding, we obtain:

argmax
θ∈RV

pΘ|X,Y,Z(θ, x, y,Y)

= argmin
θ∈RV

∑
s∈S

(
−ys fθ(xs) + log

(
1 + 2fθ(xs)

))
+

log e

2σ2
∥θ∥22 .

12/20

Partitioning (clustering)

Lemma. Estimating maximally probable decisions y, given attributes x, given
the set of feasible decisions Y, and given parameters θ, i.e.,

argmax
y∈{0,1}S

pY |X,Z,Θ(y, x,Y, θ) (7)

assumes the form of the set partition problem

argmin
y : (A2)→{0,1}

∑
{a,b}∈S

(−⟨θ, x{a,b}⟩) y{a,b} (8)

subject to ∀a ∈ A ∀b ∈ A \ {a} ∀c ∈ A \ {a, b} :
y{a,b} + y{b,c} − 1 ≤ y{a,c} . (9)

Theorem. The set partition problem is np-hard.

It has been studied intensively, notably by Chopra and Rao (1993), Bansal et
al. (2004) and Demaine et al. (2006).

13/20

We will discuss three local search algorithms for the set partition problem.

For simplicity, we define c : S → R such that

∀{a, a′} ∈ S : c{aa′} = −⟨θ, x{a,a′}⟩ (10)

and write the (linear) cost function φ : {0, 1}S → R such that

∀y ∈ {0, 1}S : φ(y) =
∑

{a,a′}∈S

c{a,a′} y{a,a′} (11)

14/20

Partitioning (clustering)

Greedy joining algorithm:

▶ The greedy joining algorithm is a local search algorithm that starts from any
initial partition.

▶ It searches for partitions with lower cost by joining pairs of subsets
recursively.

▶ As subsets can only grow and the number of subsets decreases by one in
every step, one typically starts from the finest partition Π0 of A into
one-elementary subsets.

Definition. For any partition Π of A, and any B,C ∈ Π, let joinBC [Π] be the
partition of A obtained by joining the sets B and C in Π, i.e.:

joinBC [Π] = (Π \ {B,C}) ∪ {B ∪ C} (12)

15/20

Partitioning (clustering)

Π′ = greedy-joining(Π)

choose {B,C} ∈ argmin
{B′,C′}∈(Π2)

φ(yjoinB′C′ [Π])− φ(yΠ)

if φ(yjoinBC [Π])− φ(yΠ) < 0
Π′ := greedy-joining(joinBC [Π])

else
Π′ := Π

16/20

Partitioning (clustering)

Greedy moving algorithm:

▶ The greedy moving algorithm is a local search algorithm that starts from
any initial partition, e.g., the fixed point of greedy joining.

▶ It searches for partitions with lower cost by recursively moving individual
elements from one subset to another, or to a new subset.

▶ When an element is moved to a new subset, the number of subsets
increases. When the last element is moved out of a subset, the number of
subsets decreases.

Definition. For any partition Π of A, any a ∈ A and any U ∈ Π ∪ {∅}, let
moveaU [Π] the partition of A obtained by moving the element a to a subset
U ∪ {a} in Π.

moveaU [Π] =Π \ {U} \ {W ∈ Π | a ∈ W}

∪ {U ∪ {a}} ∪
⋃

{W∈Π | a∈W∧{a}≠W}

{W \ {a}} . (13)

17/20

Partitioning (clustering)

Π′ = greedy-moving(Π)

choose (a, U) ∈ argmin
(a′,U′)∈A×(Π∪{∅})

φ(ymovea′U′ [Π])− φ(yΠ)

if φ(ymoveaU [Π])− φ(yΠ) < 0
Π′ := greedy-moving(moveaU [Π])

else
Π′ := Π

18/20

Partitioning (clustering)

Greedy moving using the technique of Kernighan and Lin:

▶ Both algorithms discussed above terminate as soon as no transformation
(join and move, resp.) leads to a partition with strictly lower cost.

▶ This can be sub-optimal in case transformations that increase the cost at
one point in the recursion can lead to transformations that decrease the
cost at later points in the recursion and the decrease overcompensates the
increase.

▶ A generalization of local search introduced by Kernighan and Lin (1970)
can escape such sub-optimal fixed points.

▶ Its application to greedy moving (next slide) builds a sequence of moves
and then carries out the first t moves whose cumulative decrease in cost is
optimal.

19/20

Partitioning (clustering)

Π′ = greedy-moving-kl(Π)

Π0 := Π
δ0 := 0
A0 := A
t := 0
repeat (build sequence of moves)

choose (at, Ut) ∈ argmin
(a,U)∈At×(Π∪{∅})

φ(ymoveaU [Πt]) − φ(yΠt)

Πt+1 := moveatUt
[Πt]

δt+1 := φ(y
Πt+1) − φ(yΠt) < 0

At+1 := At \ {at} (move at only once)
t := t + 1

until At = ∅

t̂ := min argmin
t′∈{0,...,|A|}

t′∑
τ=0

δτ (choose sub-sequence)

if
t̂∑

τ=0
δτ < 0

Π′ := greedy-moving-kl(Πt̂) (recurse)
else

Π′ := Π (terminate)

20/20

Partitioning (clustering)

Summary.

▶ Learning and inferring partitions is an unsupervised learning problem
w.r.t. constrained data whose feasible labelings characterize the equivalence
relations on a set

▶ The supervised learning problem can assume the form of l2-regularized
logistic regression where samples are pairs of elements and decisions
indicate whether these elements are in the same or distinct subsets

▶ The inference problem assumes the form of the np-hard set partition
problem

▶ Local search algorithms for tackling this problem are greedy joining, greedy
moving, and greedy moving using the technique of Kernighan and Lin.

