Computer Vision II

Bjoern Andres

Machine Learning for Computer Vision
TU Dresden
April 17, 2020

Notation

Throughout the course, we shall use the following notation:

- We write "iff" as shorthand for "if and only if"
- For any $m \in \mathbb{N}$, we define $[m]=\{0, \ldots, m-1\}$.
- For any set A, we denote by 2^{A} the power set of A
- For any set A and any $m \in \mathbb{N}$, we denote by $\binom{A}{m}=\left\{B \in 2^{A}| | B \mid=m\right\}$ the set of all m-elementary subsets of A
- For any sets A, B, we denote by B^{A} the set of all maps from A to B

Bilateral Filter

We recall from the course Computer Vision I operations (filters) on digital images by looking at the example of the bilateral filter. Bilateral filtering is a powerful tool for image de-noising and is implemented, e.g., in GIMP and Adobe Photoshop.

We consider:

- A grid graph $G=(V, E)$ whose nodes we refer to as pixels. E.g., in case of a 2-dimensional grid of $n_{0} \cdot n_{1}$ pixels, $V=\left[n_{0}\right] \times\left[n_{1}\right]$
- A non-empty set R whose elements we refer to as intensities, gray values or colors. E.g., $R=[0,1] \subset \mathbb{R}$ or $R=\{0, \ldots, 255\}$
- A map $f: V \rightarrow R$ called a digital image

Bilateral Filter

Given

- a metric $d_{s}: V \times V \rightarrow \mathbb{R}_{0}^{+}$and a decreasing $w_{s}: \mathbb{R}_{0}^{+} \rightarrow[0,1]$
- a metric $d_{r}: R \times R \rightarrow \mathbb{R}_{0}^{+}$and a decreasing $w_{r}: \mathbb{R}_{0}^{+} \rightarrow[0,1]$
- a $N: V \rightarrow 2^{V}$ that defines, for every pixel $v \in V$, a set $N(v) \subseteq V$ called the spatial neighborhood of v
- the $\nu: R^{V} \rightarrow \mathbb{R}^{V}$, called normalization, such that for any digital image $f: V \rightarrow R$ and any pixel $v \in V$:

$$
\begin{equation*}
\nu(f)(v)=\sum_{v^{\prime} \in N(v)} w_{s}\left(d_{s}\left(v, v^{\prime}\right)\right) w_{r}\left(d_{r}\left(f(v), f\left(v^{\prime}\right)\right)\right) \tag{1}
\end{equation*}
$$

the bilateral filter w.r.t. $d_{s}, w_{s}, d_{r}, w_{r}$ and N is the $\beta: R^{V} \rightarrow \mathbb{R}^{V}$ such that for any digital image $f: V \rightarrow R$ and any pixel $v \in V$:

$$
\begin{equation*}
\beta(f)(v)=\frac{1}{\nu(f)(v)} \sum_{v^{\prime} \in N(v)} w_{s}\left(d_{s}\left(v, v^{\prime}\right)\right) w_{r}\left(d_{r}\left(f(v), f\left(v^{\prime}\right)\right)\right) f\left(v^{\prime}\right) \tag{2}
\end{equation*}
$$

Bilateral Filter

Example

- $n_{0}=768, n_{1}=1024, V=\left[n_{0}\right] \times\left[n_{1}\right], R=[0,1] \subset \mathbb{R}$
- $d_{s}\left(v, v^{\prime}\right)=\left\|v-v^{\prime}\right\|_{2}$ and, for a filter parameter $\sigma_{s}>0$:

$$
\begin{equation*}
w_{s}(x)=\frac{1}{\sigma_{s} \sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2 \sigma_{s}^{2}}\right) \tag{3}
\end{equation*}
$$

- $d_{r}\left(g, g^{\prime}\right)=\left|g-g^{\prime}\right|$ and, for a filter parameter $\sigma_{r}>0$:

$$
\begin{equation*}
w_{r}(x)=\frac{1}{1+\frac{x^{2}}{\sigma_{r}^{2}}} \tag{4}
\end{equation*}
$$

- for a filter parameter $n \in \mathbb{R}_{0}^{+}$:

$$
\begin{equation*}
N(v)=\left\{v^{\prime} \in V \mid d_{s}\left(v, v^{\prime}\right)<n\right\} \tag{5}
\end{equation*}
$$

Bilateral Filter

Suggested self-study:

- Implement a bilateral filter for gray-scale images
- Apply your implementation to a digital picture of yours or from the web
- Try different metrics d_{s}, d_{r} and weighting functions w_{s}, w_{r}
- Try iterating bilateral filtering
- Share and discuss your implementations, outputs and findings via OPAL

Advanced self-study:

- Define, implement and apply bilateral filtering for color images
- Share and discuss your implementations, outputs and findings via OPAL

