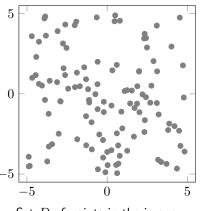
Computer Vision II

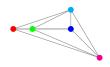
Bjoern Andres

 $\begin{array}{c} \text{Machine Learning for Computer Vision} \\ \text{TU Dresden} \end{array}$

Object recognition is the task of finding any occurrences of an object in an image, given a **model** of the the geometry and appearance of the object.

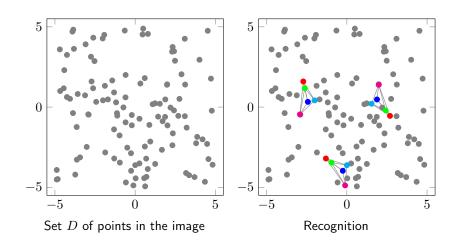


Set ${\cal D}$ of points in the image



 $ullet \epsilon$ (not part of the object)

Set V of object key points



Decisions at points

- For any point $d \in D$ in the image and any key point $v \in V$ of the object, let $y_{dv} \in \{0,1\}$ indicate whether the point d is an occurrence of the key point v in the image
- ightharpoonup We constrain each point in the image to be an occurrence of precisely one key point, possibly ϵ . Hence, we consider the feasible set

$$Y_{DV} = \left\{ y \colon D \times V \to \{0, 1\} \mid \forall d \in D \colon \sum_{v \in V} y_{dv} = 1 \right\} .$$

Costs at points

- For any point $d \in D$ and any key point $v \in V$, let $c_{dv} \in \mathbb{R}$ a cost associated with the decision $y_{dv} = 1$
- ► This cost typically depends on the contents of the image at the point *d*.

Decisions for pairs of points

- ▶ For any pair $\{d,d'\} \in \binom{D}{2}$ of points, let $x_{\{d,d'\}} \in \{0,1\}$ indicate whether d and d' belong to the same occurrence of an object in the image
- ► We require these decisions to be transitive, i.e.

$$\forall d \in D \ \forall d' \in D \setminus \{d\} \ \forall d'' \in D \setminus \{d, d'\}:$$

$$x_{\{d, d'\}} + x_{\{d', d''\}} - 1 \le x_{\{d, d''\}}$$
 (1)

Hence, we consider the feasible set

$$X_D = \left\{ x \colon \binom{D}{2} \to \{0, 1\} \mid (1) \right\}$$

Costs for pairs of points

- For any pair $(d,d')\in D^2$ of points such that $d\neq d'$ and any pair $(v,w)\in V^2$ of key points, let
 - $c'_{dd'vw} \in \mathbb{R}$ a cost associated with the decision $y_{dv} \, y_{d'w} x_{\{d,d'\}} = 1$
 - $ightharpoonup c''_{dd'vw} \in \mathbb{R}$ a cost associated with the decision
 - $y_{dv} y_{d'w} (1 x_{\{d,d'\}}) = 1$
- ▶ These costs can depend, e.g., on the distance between d and d' in the image plane.

Optimization problem

► The task of object recognition can now be stated as the optimization problem

$$\begin{split} \min_{(x,y) \in X_D \times Y_{DV}} \sum_{d \in D} \sum_{v \in V} c_{dv} \, y_{dv} \\ + \sum_{d \in D} \sum_{d' \in D \setminus \{d\}} \sum_{(v,w) \in V^2} c'_{dd'vw} \, y_{dv} \, y_{d'w} \, x_{\{d,d'\}} \\ + \sum_{d \in D} \sum_{d' \in D \setminus \{d\}} \sum_{(v,w) \in V^2} c''_{dd'vw} \, y_{dv} \, y_{d'w} (1 - x_{\{d,d'\}}) \end{split}$$

- ► This is a joint graph decomposition and node labeling problem
- ► The local search algorithm we have considered before (for the task of joint image decomposition and pixel labeling) can be applied!