Computer Vision II

Bjoern Andres

Machine Learning for Computer Vision
TU Dresden

2020-05-08

Pixel classification

- So far, we have studied a local search algorithm for the smooth pixel classification problem.
- On the one hand, this algorithm is easy to implement and has straight-forward generalizations, e.g., to the case of more than two classes.
- On the other hand, it does not necessarily solve smooth pixel classification with two classes to optimality.
- Next, we will reduce the smooth pixel classification problem with two classes to the well-known minimum st-cut problem that can be solved exactly and efficiently.
- The notes are organized as follows
- Definition of the minimum st-cut problem
- Submodularity
- Reduction of the smooth pixel classification problem

Definition 1

A 5-tuple $N=(V, E, s, t, \gamma)$ is called a network iff (V, E) is a directed graph and $s \in V$ and $t \in V$ and $s \neq t$ and $\gamma: E \rightarrow \mathbb{R}_{0}^{+}$.
The nodes s and t are called the source and the sink of N, respectively. For any edge $e \in E, \gamma_{e}$ is called the capacity of e in N.

Definition 2

Let (V, E) be a directed graph. Let $s \in V$ and $t \in V$ and $s \neq t$.

- $X \subseteq V$ is called an st-cutset of (V, E) iff $s \in X$ and $t \notin X$.
- $Y \subseteq E$ is called an st-cut of (V, E) iff there exists an st-cutset X such that $Y=\{v w \in E \mid v \in X \wedge w \notin X\}$.

Definition 3

The instance of the Minimum st-Cut Problem w.r.t. a network $N=(V, E, s, t, \gamma)$ is to

$$
\begin{align*}
\min _{x \in\{0,1\}^{V}} & \sum_{v w \in E} x_{v}\left(1-x_{w}\right) \gamma_{v w} \tag{1}\\
\text { subject to } & x_{s}=1 \tag{2}\\
& x_{t}=0 \tag{3}
\end{align*}
$$

Definition 4

A lattice (S, \preceq) is a set S, equipped with a partial order \preceq, such that any two elements of S have an infimum and a supremum w.r.t. \preceq.

Example. $\left(\{0,1\}^{2}, \preceq\right)$ with $\preceq:=\left\{(s, t) \in S \times S \mid s_{1} \leq t_{1} \wedge s_{2} \leq t_{2}\right\}$.

For any $s, t \in\{0,1\}^{2}$,

$$
\begin{aligned}
\sup (s, t) & =\left(\max \left\{s_{1}, t_{1}\right\}, \max \left\{s_{2}, t_{2}\right\}\right) \\
\inf (s, t) & =\left(\min \left\{s_{1}, t_{1}\right\}, \min \left\{s_{2}, t_{2}\right\}\right)
\end{aligned}
$$

Definition 5
A function $f: S \rightarrow \mathbb{R}$ is called submodular w.r.t. a lattice (S, \preceq) iff

$$
\begin{equation*}
\forall s, t \in S \quad f(\inf (s, t))+f(\sup (s, t)) \leq f(s)+f(t) \tag{4}
\end{equation*}
$$

Lemma 1

For any $f:\{0,1\}^{2} \rightarrow \mathbb{R}$, the following statements are equivalent.

1. f is is submodular w.r.t. the the lattice $\left(\{0,1\}^{2}, \preceq\right)$
2. $f(0,0)+f(1,1) \leq f(1,0)+f(0,1)$
3. The unique form

$$
c_{\emptyset}+c_{\{1\}} x_{1}+c_{\{2\}} x_{2}+c_{\{1,2\}} x_{1} x_{2}
$$

of f is such that $c_{\{1,2\}} \leq 0$.

Proof.

- $f(0,0)+f(1,1) \leq f(1,0)+f(0,1)$ is the only condition in

$$
\forall s, t \in S \quad f(\inf (s, t))+f(\sup (s, t)) \leq f(s)+f(t)
$$

which is not generally true. Thus, (1.) is equivalent to (2.).

- We have

$$
\begin{aligned}
& f(0,0)=c_{\emptyset} \\
& f(1,0)=c_{\emptyset}+c_{\{1\}} \\
& f(0,1)=c_{\emptyset}+c_{\{2\}} \\
& f(1,1)=c_{\emptyset}+c_{\{1\}}+c_{\{2\}}+c_{\{1,2\}} .
\end{aligned}
$$

Therefore,

$$
c_{\{1,2\}}=f(1,1)-f(1,0)-f(0,1)+f(0,0)
$$

and thus, (2.) is equivalent to (3.).

Lemma 2
The sum of finitely many submodular functions is submodular.

Lemma 3

For every $f:\{0,1\}^{2} \rightarrow \mathbb{R}$, there exist unique $a_{0} \in \mathbb{R}$ and $a_{1}, a_{\overline{1}}, a_{2}, a_{\overline{2}}, a_{12}, a_{\overline{1} 2} \in \mathbb{R}_{0}^{+}$such that

$$
\begin{equation*}
a_{1} a_{\overline{1}}=a_{2} a_{\overline{2}}=a_{12} a_{\overline{1} 2}=0 \tag{5}
\end{equation*}
$$

and

$$
\begin{align*}
\forall x \in\{0,1\}^{2} \quad f(x)= & a_{0} \\
& +a_{1} x_{1}+a_{\overline{1}}\left(1-x_{1}\right) \\
& +a_{2} x_{2}+a_{\overline{2}}\left(1-x_{2}\right) \\
& +a_{12} x_{1} x_{2}+a_{\overline{1} 2}\left(1-x_{1}\right) x_{2} \tag{6}
\end{align*}
$$

Proof.

- Comparison of (6) with the unique form

$$
c_{\emptyset}+c_{\{1\}} x_{1}+c_{\{2\}} x_{2}+c_{\{1,2\}} x_{1} x_{2}
$$

yields

$$
\begin{align*}
a_{0}+a_{\overline{1}}+a_{\overline{2}} & =c_{\emptyset} \\
a_{1}-a_{\overline{1}} & =c_{\{1\}} \\
a_{2}-a_{\overline{2}}+a_{\overline{1} 2} & =c_{\{2\}} \\
a_{12}-a_{\overline{1} 2} & =c_{\{1,2\}} \tag{7}
\end{align*}
$$

- By these equations (from bottom to top), (5) and c define a uniquely.

Lemma 4 (Kolmogorov and Zabih)

For every submodular $f:\{0,1\}^{2} \rightarrow \mathbb{R}$ and its unique coefficient $a_{0} \in \mathbb{R}$ from Lemma 3,

$$
\begin{equation*}
\min _{x \in\{0,1\}^{2}} f_{x}-a_{0} \tag{8}
\end{equation*}
$$

is equal to the weight of a minimum st-cut in the graph below whose edge weights are the (unique, non-negative) coefficients from Lemma 3.

Moreover, f is minimal at $\hat{x} \in\{0,1\}^{2}$ iff $\left\{j \in\{1,2\} \mid \hat{x}_{j}=0\right\}$ is a minimum st-cutset of the above graph.

Proof.

- Submodularity of f implies $a_{12}=0$ in (7), by Lemma 1 and (5).
- Comparison of the four possible minima of f,

$$
\begin{aligned}
& f(0,0)=a_{0}+a_{\overline{1}}+a_{\overline{2}} \\
& f(1,0)=a_{0}+a_{1}+a_{\overline{2}} \\
& f(0,1)=a_{0}+a_{\overline{1}}+a_{2}+a_{\overline{1} 2} \\
& f(1,1)=a_{0}+a_{1}+a_{2}+a_{12}
\end{aligned}
$$

with the four possible minimum cuts below proves the Lemma.

Definition 6

For any smooth pixel classification problem

$$
\begin{equation*}
\min _{y \in\{0,1\}^{V}} \underbrace{\sum_{v \in V} c_{v} y_{v}+\sum_{\{v, w\} \in E} c_{\{v, w\}}^{\prime}\left|y_{v}-y_{w}\right|}_{\varphi(y)} \tag{9}
\end{equation*}
$$

the induced minimum st-cut problem is defined by the network ($V^{\prime}, E^{\prime}, s, t, \gamma$) such that $V^{\prime}=V \cup\{s, t\}$,

$$
\begin{align*}
E^{\prime}= & \left\{(s, v) \in V^{\prime 2} \mid c_{v}>0\right\} \cup\left\{(v, t) \in V^{\prime 2} \mid c_{v}<0\right\} \\
& \cup\left\{(v, w) \in V^{\prime 2} \mid\{v, w\} \in E\right\} \tag{10}
\end{align*}
$$

and $\gamma: E^{\prime} \rightarrow \mathbb{R}_{0}^{+}$such that

$$
\begin{array}{ll}
\forall(s, v) \in E^{\prime}: & \gamma_{(s, v)}=c_{v} \\
\forall(v, t) \in E^{\prime}: & \gamma_{(v, t)}=-c_{v} \\
\forall\{v, w\} \in E: & \gamma_{(v, w)}=\gamma_{(w, v)}=c_{\{v, w\}}^{\prime} . \tag{13}
\end{array}
$$

Lemma 5

For any smooth pixel classification problem w.r.t. a pixel grid graph $G=(V, E)$ and the induced minimum st-cut problem with the network ($V^{\prime}, E^{\prime}, s, t, \gamma$), $\hat{y}: V \rightarrow\{0,1\}$ is an optimal pixel classification iff $\left\{v \in V \mid \hat{y}_{v}=0\right\}$ is an optimal st-cutset.

Proof (sketch). The function φ is submodular, by Lemma 2 and $c^{\prime}>0$. The statement holds by Lemma 3 and the fact that for all $y \in\{0,1\}^{V}$:

$$
\varphi(y)=\sum_{v \in V} c_{v} y_{v}+\sum_{\{v, w\} \in E} c_{\{v, w\}}^{\prime}\left(y_{v}\left(1-y_{w}\right)+\left(1-y_{v}\right) y_{w}\right) .
$$

Suggested self-study:

- Solve the smooth pixel classification problems $-2 y_{1}+3 y_{2}+c\left|y_{1}-y_{2}\right|$ for $c \in\{1,5\}$ via the induced minimum st-cut problem
- Implement a solver for the smooth pixel classification problem using any existing implementation of any algorithm for the minimum st-cut problem ${ }^{1}$.
- Apply this algorithm to the pixel classification problem from the previous lecture
- Compare the classifications $y \in\{0,1\}^{V}$ and objective values $\varphi(y)$ found by local search with those found by minimum $s t$-cuts
- Share your results using OPAL.

[^0]
[^0]: ${ }^{1}$ Alternatively, use any algorithm for computing a maximum st-flow, e.g. https:// www.boost.org/doc/libs/1_48_0/libs/graph/doc/edmonds_karp_max_flow.html, and consider the minimum st-cutset of all nodes reachable from the source node in the residual network.

