Computer Vision II

Bjoern Andres

 $\begin{array}{c} \text{Machine Learning for Computer Vision} \\ \text{TU Dresden} \end{array}$

2020-05-08

Pixel classification

- ► So far, we have studied a local search algorithm for the smooth pixel classification problem.
- ➤ On the one hand, this algorithm is easy to implement and has straight-forward generalizations, e.g., to the case of more than two classes.
- ► On the other hand, it does not necessarily solve smooth pixel classification with two classes to optimality.
- Next, we will reduce the smooth pixel classification problem with two classes to the well-known minimum st-cut problem that can be solved exactly and efficiently.
- ► The notes are organized as follows
 - ▶ Definition of the minimum *st*-cut problem
 - Submodularity
 - ► Reduction of the smooth pixel classification problem

A 5-tuple $N = (V, E, s, t, \gamma)$ is called a **network** iff (V, E) is a directed graph and $s \in V$ and $t \in V$ and $s \neq t$ and $\gamma : E \to \mathbb{R}_0^+$.

The nodes s and t are called the **source** and the **sink** of N, respectively.

For any edge $e \in E$, γ_e is called the **capacity** of e in N.

Let (V, E) be a directed graph. Let $s \in V$ and $t \in V$ and $s \neq t$.

- ▶ $X \subseteq V$ is called an st-cutset of (V, E) iff $s \in X$ and $t \notin X$.
- ▶ $Y \subseteq E$ is called an st-cut of (V, E) iff there exists an st-cutset X such that $Y = \{vw \in E \mid v \in X \land w \notin X\}$.

 $N = (V, E, s, t, \gamma)$ is to

 $\min_{x \in \{0,1\}^V} \quad \sum_{vw \in E} x_v \left(1 - x_w\right) \gamma_{vw}$

 $x_t = 0$

subject to $x_s = 1$

(1)

(2)(3)

A lattice (S, \preceq) is a set S, equipped with a partial order \preceq , such that any two elements of S have an infimum and a supremum w.r.t. \preceq .

Example. $(\{0,1\}^2, \preceq)$ with $\preceq := \{(s,t) \in S \times S \mid s_1 \leq t_1 \land s_2 \leq t_2\}.$

For any $s,t\in\{0,1\}^2$,

$$\sup(s,t) = (\max\{s_1,t_1\}, \max\{s_2,t_2\})$$
$$\inf(s,t) = (\min\{s_1,t_1\}, \min\{s_2,t_2\})$$

A function $f: S \to \mathbb{R}$ is called **submodular** w.r.t. a lattice (S, \preceq) iff

(4)

A function
$$f:S o\mathbb{R}$$
 is called **submodular** w.r.t. a lattice (S,\preceq) iff $orall s,t\in S$ $f(\inf(s,t))+f(\sup(s,t))\leq f(s)+f(t)$.

Lemma 1 For any $f: \{0,1\}^2 \to \mathbb{R}$, the following statements are equivalent.

 $c_{\emptyset} + c_{\{1\}}x_1 + c_{\{2\}}x_2 + c_{\{1,2\}}x_1x_2$

- 1. f is is submodular w.r.t. the the lattice $(\{0,1\}^2, \preceq)$

3. The unique form

of f is such that $c_{\{1,2\}} \leq 0$.

- 2. f(0,0) + f(1,1) < f(1,0) + f(0,1)

Proof.

▶ $f(0,0) + f(1,1) \le f(1,0) + f(0,1)$ is the only condition in

$$\forall s, t \in S$$
 $f(\inf(s, t)) + f(\sup(s, t)) \le f(s) + f(t)$

which is not generally true. Thus, (1.) is equivalent to (2.).

▶ We have

$$f(0,0) = c_{\emptyset}$$

$$f(1,0) = c_{\emptyset} + c_{\{1\}}$$

$$f(0,1) = c_{\emptyset} + c_{\{2\}}$$

$$f(1,1) = c_{\emptyset} + c_{\{1\}} + c_{\{2\}} + c_{\{1,2\}}.$$

Therefore,

$$c_{\{1,2\}} = f(1,1) - f(1,0) - f(0,1) + f(0,0)$$

and thus, (2.) is equivalent to (3.).

Lemma 2	
The sum of finitely many submodular functions is submodular.	

Lemma 3

and

For every $f: \{0,1\}^2 \to \mathbb{R}$, there exist unique $a_0 \in \mathbb{R}$ and

 $a_1, a_{\bar{1}}, a_2, a_{\bar{2}}, a_{12}, a_{\bar{1}2} \in \mathbb{R}_0^+$ such that

 $a_1 a_{\bar{1}} = a_2 a_{\bar{2}} = a_{12} a_{\bar{1}2} = 0$

 $+a_1x_1+a_{\bar{1}}(1-x_1)$ $+a_2x_2+a_{\bar{2}}(1-x_2)$

 $+a_{12}x_1x_2+a_{\bar{1}2}(1-x_1)x_2$.

 $\forall x \in \{0,1\}^2 \quad f(x) = a_0$

(5)

(6)

Proof.

► Comparison of (6) with the unique form

$$c_{\emptyset} + c_{\{1\}}x_1 + c_{\{2\}}x_2 + c_{\{1,2\}}x_1x_2$$

yields

$$a_{0} + a_{\bar{1}} + a_{\bar{2}} = c_{\emptyset}$$

$$a_{1} - a_{\bar{1}} = c_{\{1\}}$$

$$a_{2} - a_{\bar{2}} + a_{\bar{1}2} = c_{\{2\}}$$

$$a_{12} - a_{\bar{1}2} = c_{\{1,2\}}$$
(7)

▶ By these equations (from bottom to top), (5) and c define a uniquely.

Lemma 4 (Kolmogorov and Zabih)

For every **submodular** $f:\{0,1\}^2 \to \mathbb{R}$ and its unique coefficient $a_0 \in \mathbb{R}$ from Lemma 3.

$$\min_{x \in \{0,1\}^2} f_x - a_0 \tag{8}$$

is equal to the weight of a **minimum** st-**cut** in the graph below whose edge weights are the (unique, non-negative) coefficients from Lemma 3.

Moreover, f is minimal at $\hat{x} \in \{0,1\}^2$ iff $\{j \in \{1,2\} \mid \hat{x}_j = 0\}$ is a minimum st-cutset of the above graph.

Proof.

- ▶ Submodularity of f implies $a_{12} = 0$ in (7), by Lemma 1 and (5).
- ightharpoonup Comparison of the four possible minima of f,

$$f(0,0) = a_0 + a_{\bar{1}} + a_{\bar{2}}$$

$$f(1,0) = a_0 + a_1 + a_{\bar{2}}$$

$$f(0,1) = a_0 + a_{\bar{1}} + a_2 + a_{\bar{1}2}$$

$$f(1,1) = a_0 + a_1 + a_2 + a_{12} ,$$

with the four possible minimum cuts below proves the Lemma.

For any smooth pixel classification problem
$$\min \sum_{x \in \mathcal{X}_{k}} \sum_{x \in \mathcal{X}_{k}} \frac{1}{x} \sum_{x \in$$

$$\min_{z \in [0,1], V} \sum c_v y_v + \sum$$

min
$$\sum c_v y_v + \sum$$

$$\min_{y \in \{0,1\}^V} \quad \sum_{v \in V} c_v \, y_v + \sum_{\{v,w\} \in E} c'_{\{v,w\}} \, |y_v - y_w|$$

$$\min_{y \in \{0,1\}^V} \quad \sum_{v \in V} c_v \, y_v + \sum_{\{v,w\} \in V} c_v \, y_v + \sum$$

$$\lim_{y \in \{0,1\}^V} \sum_{v \in V} c_v \, y_v + \sum_{\{v,w\} \in J} c_v \, y_v + \sum_{$$

 (V', E', s, t, γ) such that $V' = V \cup \{s, t\}$,

and $\gamma \colon E' \to \mathbb{R}_0^+$ such that

$$\min_{y \in \{0,1\}^V} \quad \sum_{v \in V} c_v \, y_v + \sum_{\{v,w\} \in I}$$

$$\min_{y \in \{0,1\}^V} \sum_{v \in V} c_v \, y_v + \sum_{v$$

$$\min_{v \in I(0,1)V} \quad \sum c_v y_v + \quad \sum$$

$$\min_{v \in \{0,1\}^V} \sum c_v y_v + \sum$$

min
$$\sum c_n y_n + \sum$$

$$\sum_{n=1}^{\infty} a_n u_n + \sum_{n=1}^{\infty} a_n u_n$$

the induced minimum st-cut problem is defined by the network

 $\cup \{(v, w) \in V'^2 \mid \{v, w\} \in E\}$

 $\forall (s, v) \in E' : \quad \gamma_{(s,v)} = c_v$

 $\forall (v,t) \in E' : \quad \gamma_{(v,t)} = -c_v$

 $E' = \{(s, v) \in V'^2 \mid c_v > 0\} \cup \{(v, t) \in V'^2 \mid c_v < 0\}$

 $\forall \{v, w\} \in E: \quad \gamma_{(v,w)} = \gamma_{(w,v)} = c'_{\{v,w\}}.$

$$|y_w|$$

(10)

(11)

(12)

(13)

Lemma 5

For any smooth pixel classification problem w.r.t. a pixel grid graph G = (V, E) and the induced minimum st-cut problem with the network (V', E', s, t, γ) , $\hat{y}: V \to \{0, 1\}$ is an optimal pixel classification iff $\{v \in V \mid \hat{y}_v = 0\}$ is an optimal st-cutset.

Proof (sketch). The function φ is submodular, by Lemma 2 and c' > 0. The statement holds by Lemma 3 and the fact that for all $y \in \{0,1\}^V$:

$$\varphi(y) = \sum_{v \in V} c_v y_v + \sum_{\{v,w\} \in E} c'_{\{v,w\}} \left(y_v (1 - y_w) + (1 - y_v) y_w \right) .$$

Suggested self-study:

- ▶ Solve the smooth pixel classification problems $-2y_1+3y_2+c|y_1-y_2|$ for $c\in\{1,5\}$ via the induced minimum st-cut problem
- ► Implement a solver for the smooth pixel classification problem using any existing implementation of any algorithm for the minimum st-cut problem¹.
- ► Apply this algorithm to the pixel classification problem from the previous lecture
- ▶ Compare the classifications $y \in \{0,1\}^V$ and objective values $\varphi(y)$ found by local search with those found by minimum st-cuts
- ► Share your results using OPAL.

 $^{^1} Alternatively,$ use any algorithm for computing a maximum st-flow, e.g. https://www.boost.org/doc/libs/1_48_0/libs/graph/doc/edmonds_karp_max_flow.html, and consider the minimum st-cutset of all nodes reachable from the source node in the residual network.