- 1. Exercise, Solution to problem 1 -

Solve exercise 1 in the lecture notes.
Solution:
first let us repeat the task from the lecture notes:

$$
\begin{align*}
\underset{\theta \in \mathbb{R}^{m}}{\operatorname{argmax}} & p_{\Theta \mid X, Y}(\theta, x, y) \\
\stackrel{3.3}{=} \underset{\theta \in \mathbb{R}^{m}}{\operatorname{argmax}} & \prod_{s \in S} p_{Y_{s} \mid X_{s}, \Theta}\left(y_{s}, x_{s}, \theta\right) \prod_{v \in V} p_{\Theta_{v}}\left(\theta_{v}\right) \\
=\underset{\theta \in \mathbb{R}^{m}}{\operatorname{argmax}} & \sum_{s \in S} \log p_{Y_{s} \mid X_{s}, \Theta}\left(y_{s}, x_{s}, \theta\right)+\sum_{v \in V} \log p_{\Theta_{v}}\left(\theta_{v}\right) \tag{3.9}
\end{align*}
$$

Substituting in (3.9) the linearization

$$
\begin{align*}
& \log p_{Y_{s} \mid X_{s}, \Theta}\left(y_{s}, x_{s}, \theta\right) \\
= & y_{s} \log p_{Y_{s} \mid X_{s}, \Theta}\left(1, x_{s}, \theta\right)+\left(1-y_{s}\right) \log p_{Y_{s} \mid X_{s}, \Theta}\left(0, x_{s}, \theta\right) \\
= & y_{s} \log \frac{p_{Y_{s} \mid X_{s}, \Theta}\left(1, x_{s}, \theta\right)}{p_{Y_{s} \mid X_{s}, \Theta}\left(0, x_{s}, \theta\right)}+\log p_{Y_{s} \mid X_{s}, \Theta}\left(0, x_{s}, \theta\right) \tag{3.10}
\end{align*}
$$

as well as (3.4) and (3.5) yields the form (3.11) below that is called the instance of the l_{2}-regularized logistic regression problem with respect to x, y and σ.

$$
\begin{equation*}
\underset{\theta \in \mathbb{R}^{m}}{\operatorname{argmin}} \sum_{s \in S}\left(-y_{s}\left\langle\theta, x_{s}\right\rangle+\log \left(1+2^{\left\langle\theta, x_{s}\right\rangle}\right)\right)+\frac{\log e}{2 \sigma^{2}}\|\theta\|_{2}^{2} \tag{3.11}
\end{equation*}
$$

a) Derive (3.11) from (3.10) using (3.9), (3.4) and (3.5)
b) Is the objective function of (3.11) convex?

Solution a):

$$
\begin{align*}
p_{Y_{s} \mid X_{s}, \Theta}\left(0, x_{s}, \theta\right) & =1-p_{Y_{s} \mid X_{s}, \Theta}\left(1, x_{s}, \theta\right) \\
& =1-\frac{1}{1+2^{-\left\langle\theta, x_{s}\right\rangle}} \\
& =\frac{2^{-\left\langle\theta, x_{s}\right\rangle}}{1+2^{-\left\langle\theta, x_{s}\right\rangle}} \quad(S .1) \tag{S.1}\\
& =\frac{1}{1+2^{+\left\langle\theta, x_{s}\right\rangle}} \quad(S .2) \tag{S.2}
\end{align*}
$$

We now put (S.1) in the first term of (3.10) and (S.2) in the second term of (3.10):

$$
\begin{aligned}
& y_{s} \log \frac{p_{Y_{s} \mid X_{s}, \Theta}\left(1, x_{s}, \theta\right)}{p_{Y_{s} \mid X_{s}, \Theta}\left(0, x_{s}, \theta\right)}+\log p_{Y_{s} \mid X_{s}, \Theta}\left(0, x_{s}, \theta\right) \\
= & y_{s} \log \frac{1}{2^{-\left\langle\theta, x_{s}\right\rangle}}-\log \left(1+2^{+\left\langle\theta, x_{s}\right\rangle}\right) \\
= & +y_{s}\left\langle\theta, x_{s}\right\rangle-\log \left(1+2^{+\left\langle\theta, x_{s}\right\rangle}\right)
\end{aligned}
$$

Using this in (3.9) and switching from argmax to argmin, which negates the term, results in (3.11) without the last term. In the last term $\frac{1}{\sigma \sqrt{2 \pi}}$ is a constant factor which becomes an additive constant after the log and therefore does not change the argmin.

Solution b) (convexity of (3.11)):

- (3.11) is defined on \mathbb{R}^{m}, i.e. a convex set.
- A sum is convex if all summands are convex.
- First summand is linear, i.e. convex.
- Last summand is a sum of squares, hence convex.
- "A twice continuously differentiable function of several variables is convex on a convex set if and only if its Hessian matrix of second partial derivatives is positive semidefinite on the interior of the convex set." (copied from Wikipedia)
- We need to consider the Hessian matrix of the term $\log \left(1+2^{\left\langle\theta, x_{s}\right\rangle}\right)$:

$$
\begin{align*}
h_{i, j} & =\frac{\partial}{\partial \theta_{i}} \frac{\partial}{\partial \theta_{j}} \log \left(1+2^{\left\langle\theta, x_{s}\right\rangle}\right) \tag{1}\\
& =\frac{\partial}{\partial \theta_{i}} \frac{\ln (2) \cdot x_{s, j} \cdot 2^{+\left\langle\theta, x_{s}\right\rangle}}{\ln (2) \cdot\left(1+2^{+\left\langle\theta, x_{s}\right\rangle}\right)} \tag{2}\\
& =\frac{\partial}{\partial \theta_{i}} \frac{x_{s, j}}{\left(1+2^{-\left\langle\theta, x_{s}\right\rangle}\right)} \\
& =-\frac{x_{s, j}}{\left(1+2^{-\left\langle\theta, x_{s}\right\rangle}\right)^{2}} \cdot\left(\ln (2) \cdot\left(-x_{s, i}\right)\right) \tag{3}\\
& =\frac{\ln (2)}{\left(1+2^{-\left\langle\theta, x_{s}\right\rangle}\right)^{2}} \cdot\left(x_{s, i} x_{s, j}\right) \tag{4}
\end{align*}
$$

The first factor is a positive constant c. The second factor is the matrix

$$
\begin{equation*}
M=x_{s} \cdot x_{s}^{T} \tag{5}
\end{equation*}
$$

M is positive semi-definite if for any y

$$
\begin{equation*}
y^{T} \cdot M \cdot y \geq 0 \tag{6}
\end{equation*}
$$

Because the terms in a scalar product and factors in a product can be interchanged we get

$$
\begin{align*}
y^{T} \cdot x_{s} \cdot x_{s}^{T} \cdot y & \geq 0 \tag{7}\\
\left(y^{T} \cdot x_{s}\right) \cdot\left(x_{s}^{T} \cdot y\right) & \geq 0 \tag{8}\\
\left\langle y, x_{s}\right\rangle^{2} & \geq 0 \quad \forall y \tag{9}
\end{align*}
$$

