
MACHINE LEARNING 2 SUMMER 2020

- 1. Exercise, Solution to problem 1 -

Solve exercise 1 in the lecture notes.

Solution:

first let us repeat the task from the lecture notes:

argmax
θ∈Rm

pΘ|X,Y (θ, x, y)

3.3
= argmax

θ∈Rm

∏
s∈S

pYs|Xs,Θ(ys, xs, θ)
∏
v∈V

pΘv(θv)

= argmax
θ∈Rm

∑
s∈S

log pYs|Xs,Θ(ys, xs, θ) +
∑
v∈V

log pΘv(θv) (3.9)

Substituting in (3.9) the linearization

log pYs|Xs,Θ(ys, xs, θ)

= ys log pYs|Xs,Θ(1, xs, θ) + (1− ys) log pYs|Xs,Θ(0, xs, θ)

= ys log
pYs|Xs,Θ(1, xs, θ)

pYs|Xs,Θ(0, xs, θ)
+ log pYs|Xs,Θ(0, xs, θ) (3.10)

as well as (3.4) and (3.5) yields the form (3.11) below that is called the instance
of the l2-regularized logistic regression problem with respect to x, y and σ.

argmin
θ∈Rm

∑
s∈S

(
−ys〈θ, xs〉+ log

(
1 + 2〈θ,xs〉

))
+

log e

2σ2
‖θ‖2

2 (3.11)

a) Derive (3.11) from (3.10) using (3.9), (3.4) and (3.5)
b) Is the objective function of (3.11) convex?
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Solution a):

pYs|Xs,Θ(0, xs, θ) = 1− pYs|Xs,Θ(1, xs, θ)

= 1− 1

1 + 2−〈θ,xs〉

=
2−〈θ,xs〉

1 + 2−〈θ,xs〉
(S.1)

=
1

1 + 2+〈θ,xs〉
(S.2)

We now put (S.1) in the first term of (3.10) and (S.2) in the second term of (3.10):

ys log
pYs|Xs,Θ(1, xs, θ)

pYs|Xs,Θ(0, xs, θ)
+ log pYs|Xs,Θ(0, xs, θ)

= ys log
1

2−〈θ,xs〉
− log(1 + 2+〈θ,xs〉)

= + ys〈θ, xs〉 − log(1 + 2+〈θ,xs〉)

Using this in (3.9) and switching from argmax to argmin, which negates the term,
results in (3.11) without the last term. In the last term 1

σ
√

2π
is a constant factor

which becomes an additive constant after the log and therefore does not change
the argmin.

Solution b) (convexity of (3.11)):

• (3.11) is defined on Rm, i.e. a convex set.
• A sum is convex if all summands are convex.
• First summand is linear, i.e. convex.
• Last summand is a sum of squares, hence convex.
• “A twice continuously differentiable function of several variables is convex

on a convex set if and only if its Hessian matrix of second partial derivati-
ves is positive semidefinite on the interior of the convex set.”(copied from
Wikipedia)
• We need to consider the Hessian matrix of the term log

(
1 + 2〈θ,xs〉

)
:



hi,j =
∂

∂θi

∂

∂θj
log
(
1 + 2〈θ,xs〉

)
(1)

=
∂

∂θi

ln(2) · xs,j · 2+〈θ,xs〉

ln(2) · (1 + 2+〈θ,xs〉)
(2)

=
∂

∂θi

xs,j
(1 + 2−〈θ,xs〉)

= − xs,j
(1 + 2−〈θ,xs〉)2

· (ln(2) · (−xs,i)) (3)

=
ln(2)

(1 + 2−〈θ,xs〉)2
· (xs,ixs,j) (4)

The first factor is a positive constant c. The second factor is the matrix

M = xs · xTs (5)

M is positive semi-definite if for any y

yT ·M · y ≥ 0 (6)

Because the terms in a scalar product and factors in a product can be interchanged
we get

yT · xs · xTs · y ≥ 0 (7)

(yT · xs) · (xTs · y) ≥ 0 (8)

〈y, xs〉2 ≥ 0 ∀ y (9)
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