
Chapter 7

Clustering

7.1 Decompositions and multicuts

This section is concerned with learning and inferring decompositions (clusterings) of a graph. We
introduce some terminology of Horňáková et al. (2017):

Definition 16 Let G = (A,E) be any graph. A subgraph G′ = (A′, E′) of G is called a component
of G iff G′ is non-empty, node-induced1 and connected2. A partition Π of the node set A is called a
decomposition of G iff, for every U ∈ Π, the subgraph (U,E ∩

(
U
2

)
) of G induced by U is connected

(and thus a component of G).

For any graph G, we denote by DG the set of all decompositions of G. Useful in the study of
decompositions are the multicuts of a graph:

Definition 17 For any graph G = (A,E), a subset M ⊆ E of edges is called a multicut of G iff,
for every cycle C ⊆ E of G, we have |C ∩M | 6= 1.

For any graph G, we denote by MG the set of all multicuts of G. For any decomposition of a
graph G, the set of those edges that straddle distinct components is a multicut of G. This multicut
is said to be induced by the decomposition. In fact, the map from decompositions to induced
multicuts is a bijection from DG to MG (Horňáková et al., 2017, Lemma 2). This bijection allows
us to state the problem of learning and inferring decompositions as one of learning and inferring
multicuts.

The characteristic function y : E → {0, 1} of a multicut y−1(1) decides, for every edge {a, a′} =
e ∈ E, whether the incident nodes belong to the same component (ye = 0) or distinct components
(ye = 1). By the definition of a multicut, these decisions are not necessarily independent. More
specifically:

Lemma 12 For any graph G = (V,E) and any y : E → {0, 1}, the set y−1(1) of those edges that
are mapped to 1 is a multicut of G iff the following inequalities are satisfied:

∀C ∈ cycles(G) ∀e ∈ C : ye ≤
∑

e′∈C\{e}

ye′ (7.1)

Exercise 7 a) Prove Lemma 12.

b) Show that it is sufficient in (7.1) to consider only chordless cycles.

1I.e. E′ = E ∩
(A′

2

)
2A component is not necessarily maximal w.r.t. the subgraph relation.
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Now that we have a finite set E, decisions y : E → {0, 1} and constraints (7.1), we can state
the problem of learning and inferring multicuts as a learning and inference problem (4.1) with

S = E (7.2)

Y =

y : S → {0, 1}

∣∣∣∣∣∣ ∀C ∈ cycles(G) ∀e ∈ C : ye ≤
∑

e′∈C\{e}

ye′

 (7.3)

7.2 Linear functions

7.2.1 Data

Throughout Section 7.2, we consider some graph G = (A,E) and constrained data (S,X, x,Y)
with S = E, as in (7.2), Y defined as in (7.3), and X = RV with some finite, non-empty set V . As
a special case, we consider labeled data, i.e., Y = {y} with y satisfying the constraints (7.1).

7.2.2 Familiy of functions

Throughout Section 7.2, we consider linear functions. More specifically, we consider Θ = RV and
f : Θ→ RX such that

∀θ ∈ Θ ∀x̂ ∈ RV : fθ(x̂) = 〈θ, x̂〉 . (7.4)

7.2.3 Probabilistic model

Random variables

• For any {a, a′} ∈ S, let X{a,a′} be a random variable whose realization is a vector x{a,a′} ∈ RV ,
called the attribute vector of the pair {a, a′}.

• For any {a, a′} ∈ S, let Y{a,a′} be a random variable whose realization is a binary number
y{a,a′} ∈ {0, 1}, called the decision of assigning a and a′ to distinct components

• For any v ∈ V , let Θv be a random variable whose realization is a real number θv ∈ R, called
a parameter

• Let Z be a random variable whose realization is a subset z ⊆ {0, 1}S . We are interested in
z = Y, a characterization of all multicuts (and hence, decompositions) of G

Conditional independence assumptions

We assume a probability distribution that factorizes according to the Bayesian net depicted below.

Xs

Ys

Z

Θv

v ∈ V s ∈ S

Factorization

These conditional independence assumptions imply the following factorizations:

• Firstly:

P (X,Y, Z,Θ) = P (Z | Y )
∏
s∈S

P (Ys | Xs,Θ)
∏
s∈S

P (Xs)
∏
v∈V

P (Θv) (7.5)
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• Secondly:

P (Θ | X,Y, Z) =
P (X,Y, Z,Θ)

P (X,Y, Z)

=
P (Z | Y )P (Y | X,Θ)P (X)P (Θ)

P (Z | X,Y )P (X,Y )

=
P (Z | Y )P (Y | X,Θ)P (X)P (Θ)

P (Z | Y )P (X,Y )

=
P (Y | X,Θ)P (X)P (Θ)

P (X,Y )

∝ P (Y | X,Θ)P (Θ)

=
∏
s∈S

P (Ys | Xs,Θ)
∏
v∈V

P (Θv) (7.6)

• Thirdly,

P (Y | X,Z, θ) =
P (X,Y, Z,Θ)

P (X,Z,Θ)

=
P (Z | Y )P (Y | X,Θ)P (X)P (Θ)

P (X,Z,Θ)

∝ P (Z | Y )P (Y | X,Θ)

= P (Z | Y )
∏
s∈S

P (Ys | Xs,Θ) (7.7)

Forms

Here, we consider:

• The logistic distribution

∀s ∈ S : pYs|Xs,Θ(1) =
1

1 + 2−fθ(xs)
(7.8)

• A σ ∈ R+ and the normal distribution:

∀v ∈ V : pΘv (θv) =
1

σ
√

2π
e−θ

2
v/2σ

2

(7.9)

• A uniform distribution on a subset:

∀z ⊆ {0, 1}S : pZ|Y (z) ∝

{
1 if y ∈ z
0 otherwise

(7.10)

Note that pZ|Y (Y) is non-zero iff y−1(1) is a multicut and hence defines a decomposition of
G.

7.2.4 Learning problem

Corollary 1 Estimating maximally probable parameters θ, given attributes x and labels y, i.e.,

argmax
θ∈Rm

pΘ|X,Y (θ, x, y)

is identical to the supervised learning problem w.r.t. L, R and λ such that

∀r ∈ R ∀ŷ ∈ {0, 1} : L(r, ŷ) = −ŷr + log (1 + 2r) (7.11)

∀θ ∈ Θ: R(θ) = ‖θ‖22 (7.12)

λ =
log e

2σ2
(7.13)
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7.2.5 Inference problem

Corollary 2 For any constrained data as defined above and any θ ∈ RV , the inference problem
has the form of correlation-clustering, i.e.

min
y : S→{0,1}

∑
{a,a′}∈S

(−〈θ, x{a,a′}〉) y{a,a′} (7.14)

subject to ∀C ∈ cycles(G) ∀e ∈ C : ye ≤
∑

e′∈C\{e}

ye′ . (7.15)

correlation-clustering has been studied intensively, notably by Chopra and Rao (1993),
Bansal et al. (2004) and Demaine et al. (2006).

Lemma 13 (Bansal et al. (2004)) correlation-clustering is np-hard.

Bansal et al. (2004) establish np-hardness of correlation-clustering by a reduction of
k-terminal-cut whose np-hardness is an important result of Dahlhaus et al. (1994).
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