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Chapter 1

Introduction

1.1 Notation

We shall use the following notation:

• We write “iff” as shorthand for “if and only if”

• For any m ∈ N, we define [m] = {0, . . . ,m− 1}.
• For any set A, we denote by 2A the power set of A

• For any set A and any m ∈ N, we denote by
(
A
m

)
= {B ∈ 2A | |B| = m} the set of all

m-elementary subsets of A

• For any sets A,B, we denote by BA the set of all maps from A to B
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Chapter 2

Supervised learning

2.1 Intuition

Informally, supervised learning is the problem of finding in a family g : Θ→ Y X of functions, one
gθ : X → Y that minimizes a weighted sum of two objectives:

1. g deviates little from a finite set {(xs, ys)}s∈S of input-output-pairs

2. g has low complexity, as quantified by a function R : Θ→ R+
0

We note that the family g can have meaning beyond a mere parameterization of functions from
X to Y . For instance, Θ can be a set of forms, g the functions defined by these forms, and R the
length of forms. In that case, supervised learning is really an optimization problem over forms
of functions, and R penalizes the complexity of these forms. Moreover, g can be chosen so as to
constrain the set of functions from X to Y in the first place.

We concentrate exclusively on the special case where Y is finite. In fact, we concentrate on the
case where Y = {0, 1} in this chapter and reduce more general cases to this case in Chapter 4.

Moreover, we allow ourselves to take a detour by not optimizing over a family g : Θ→ {0, 1}X
directly but instead optimizing over a family f : Θ→ RX and defining g w.r.t. f via a function
L : R× {0, 1} → R+

0 , called a loss function, such that

∀θ ∈ Θ ∀x ∈ X : gθ(x) = argmin
ŷ∈{0,1}

L(fθ(x), ŷ) . (2.1)

2.2 Definition

Definition 1 For any S 6= ∅ finite, called a set of samples, any X 6= ∅, called an attribute space
and any x : S → X, the tuple (S,X, x) is called unlabeled data.

For any y : S → {0, 1}, given in addition and called a labeling , the tuple (S,X, x, y) is called
labeled data.

Definition 2 For any labeled data T = (S,X, x, y), any Θ 6= ∅ and family of functions f : Θ→ RX ,
any R : Θ → R+

0 , called a regularizer , any L : R × {0, 1} → R+
0 , called a loss function, and

any λ ∈ R+
0 , called a regularization parameter , the instance of the supervised learning problem

w.r.t. T,Θ, f, R, L and λ is defined as

inf
θ∈Θ

λR(θ) +
1

|S|
∑
s∈S

L(fθ(xs), ys) (2.2)

Definition 3 For any unlabeled data T = (S,X, x), any f̂ : X → R and any L : R× {0, 1} → R+
0 ,

the instance of the inference problem w.r.t. T, f and L is defined as

min
y′∈{0,1}S

∑
s∈S

L(f̂(xs), y
′
s) (2.3)

7
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Lemma 1 The solutions to the inference problem are the y : S → {0, 1} such that

∀s ∈ S : ys ∈ argmin
ŷ∈{0,1}

L(f̂(xs), ŷ) . (2.4)

Moreover, if

f̂(X) ⊆ {0, 1} (2.5)

and

∀r ∈ R ∀ŷ ∈ {0, 1} : L(r, ŷ) =

{
0 if r = ŷ

1 otherwise
(2.6)

then

∀s ∈ S : y′s = f̂(xs) . (2.7)

Proof Generally, we have

min
y∈{0,1}S

∑
s∈S

L(f̂(xs), ys) =
∑
s∈S

min
ys∈{0,1}

L(f̂(xs), ys) (2.8)

By (2.5), L(f̂(xs), f̂(xs)) is well-defined for any s ∈ S. By (2.6) and non-negativity of L, we
have

∀ys ∈ {0, 1} : L(f̂(xs), f̂(xs)) = 0 ≤ L(f̂(xs), ys) . (2.9)

Thus, ys = f̂(xs) is optimal for any s ∈ S.

We note that the exact supervised learning problem formalizes a philosophical principle known
as Ockham’s razor.



Chapter 3

Deciding

3.1 Linear functions

3.1.1 Data

Throughout Section 3.1, we consider real attributes. More specifically, we consider some finite set
V 6= ∅ and labeled data T = (S,X, x, y) with X = RV . Hence, x : S → RV and y : S → {0, 1}.

3.1.2 Familiy of functions

Throughout Section 3.1, we consider linear functions. More specifically, we consider Θ = RV and
f : Θ→ RX such that

∀θ ∈ Θ ∀x̂ ∈ X : fθ(x̂) = 〈θ, x̂〉 . (3.1)

3.1.3 Probabilistic model

Random variables

• For any s ∈ S, let Xs be a random variable whose realization is a vector xs ∈ RV , called the
attribute vector of s

• For any s ∈ S, let Ys be a random variable whose realization is a binary number ys ∈ {0, 1},
called the label of s

• For any v ∈ V , let Θv be a random variable whose realization is a real number θv ∈ R, called
a parameter

Conditional independence assumptions

We assume a probability distribution that factorizes according to the Bayesian net depicted below.

Xs

YsΘv

v ∈ V s ∈ S

Factorization

• Firstly:

P (X,Y,Θ) =
∏
s∈S

P (Ys | Xs,Θ)P (Xs)
∏
v∈V

P (Θv) (3.2)

9
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• Secondly:

P (Θ | X,Y ) =
P (X,Y,Θ)

P (X,Y )

=
P (Y | X,Θ)P (X)P (Θ)

P (X,Y )

∝ P (Y | X,Θ)P (Θ)

=
∏
s∈S

P (Ys | Xs,Θ)
∏
v∈V

P (Θv) (3.3)

Forms

We consider:

• The logistic distribution

∀s ∈ S : pYs|Xs,Θ(1) =
1

1 + 2−fθ(xs)
(3.4)

• A σ ∈ R+ and the normal distribution:

∀v ∈ V : pΘv (θv) =
1

σ
√

2π
e−θ

2
v/2σ

2

(3.5)

3.1.4 Learning problem

Lemma 2 (Logistic regression) Estimating maximally probable parameters θ, given attributes
x and labels y, i.e.,

argmax
θ∈Rm

pΘ|X,Y (θ, x, y)

is identical to the supervised learning problem w.r.t. L, R and λ such that

∀r ∈ R ∀ŷ ∈ {0, 1} : L(r, ŷ) = −ŷr + log (1 + 2r) (3.6)

∀θ ∈ Θ: R(θ) = ‖θ‖22 (3.7)

λ =
log e

2σ2
(3.8)

Proof Firstly,

argmax
θ∈Rm

pΘ|X,Y (θ, x, y)

(3.3)
= argmax

θ∈Rm

∏
s∈S

pYs|Xs,Θ(ys, xs, θ)
∏
v∈V

pΘv (θv)

= argmax
θ∈Rm

∑
s∈S

log pYs|Xs,Θ(ys, xs, θ) +
∑
v∈V

log pΘv (θv) (3.9)

Substituting in (3.9) the linearization

log pYs|Xs,Θ(ys, xs, θ)

= ys log pYs|Xs,Θ(1, xs, θ) + (1− ys) log pYs|Xs,Θ(0, xs, θ)

= ys log
pYs|Xs,Θ(1, xs, θ)

pYs|Xs,Θ(0, xs, θ)
+ log pYs|Xs,Θ(0, xs, θ) (3.10)

as well as (3.4) and (3.5) yields the form (3.11) below that is called the instance of the l2-regularized
logistic regression problem with respect to x, y and σ.

argmin
θ∈Rm

∑
s∈S

(
−ys〈θ, xs〉+ log

(
1 + 2〈θ,xs〉

))
+

log e

2σ2
‖θ‖22 (3.11)
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Exercise 1 a) Derive (3.11) from (3.9) using (3.10), (3.4) and (3.5)
b) Is the objective function of (3.11) convex?

3.1.5 Inference problem

Lemma 3 Estimating maximally probable labels y, given attributes x′ and parameters θ, i.e.,

argmax
y∈{0,1}S

pY |X,Θ(y, x′, θ) (3.12)

is identical to the inference problem w.r.t. f and L. It has the solution

∀s ∈ S′ : ys =

{
1 if fθ(x

′
s) > 0

0 otherwise
(3.13)

Proof Firstly,

argmax
y∈{0,1}S′

pY |X,Θ(y, x′, θ)

= argmax
y∈{0,1}S′

∏
s∈S′

pYs|Xs,Θ(ys, x
′
s, θ)

= argmax
y∈{0,1}S′

∑
s∈S′

log pYs|Xs,Θ(ys, x
′
s, θ)

= argmax
y∈{0,1}S′

∑
s∈S′

(
ys log

pYs|Xs,Θ(1, x′s, θ)

pYs|Xs,Θ(0, x′s, θ)
+ log pYs|Xs,Θ(0, x′s, θ)

)
= argmin
y∈{0,1}S′

∑
s∈S′

(
−ysfθ(x′s) + log

(
1 + 2fθ(x′s)

))
= argmin
y∈{0,1}S′

∑
s∈S′

L(fθ(x
′
s), ys) .

Secondly,

min
y∈{0,1}S′

∑
s∈S′

(
−ysfθ(x′s) + log

(
1 + 2fθ(x′s)

))
=
∑
s∈S′

max
ys∈{0,1}

ysfθ(x
′
s) .

3.1.6 Inference algorithm

The inference problem is solved by computing independently for each s ∈ S′ the label

ys =

{
1 if 〈θ, x′s〉 > 0

0 otherwise
. (3.14)

The time complexity is O(|V ||S′|).
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Chapter 4

Semi-supervised and unsupervised
learning

4.1 Intuition

So far, we have considered learning problems w.r.t. labeled data (S,X, x, y) where, for every s ∈ S,
a label ys ∈ {0, 1} is given, and inference problems w.r.t. unlabeled data (S′, X ′, x) where no label
is given and every combination of labels y′ : S → {0, 1} is a feasible solution.

Next, we consider learning problems where not every label is given and inference problems
where not every combination of labels is feasible. Unlike before, the data we look at in both
problems coincides, consisting of tuples (S,X, x,Y) where Y ⊆ {0, 1}S is a set of feasible labelings.
In particular, Y = {0, 1}S is the special case of unlabeled data, and |Y| = 1 is the special case of
labeled data. Non-trivial choices of Y allow us to express problems of learning and inferring finite
structures such as maps (Chapter 5).

4.2 Definition

Definition 4 For any S 6= ∅ finite, called a set of samples, any X 6= ∅, called an attribute space,
any x : S → X and any ∅ 6= Y ⊆ {0, 1}S , called a set of feasible labelings , the tuple T = (S,X, x,Y)
is called constrained data.

Definition 5 For any constrained data T = (S,X, x,Y), any Θ 6= ∅ and family of functions
f : Θ→ RX , any R : Θ→ R+

0 , called a regularizer , any L : R×{0, 1} → R+
0 , called a loss function

and any λ ∈ R+
0 , called a regularization parameter , the instance of the learning and inference

problem w.r.t. T,Θ, f, R, L and λ is defined as

min
y∈Y

inf
θ∈Θ

λR(θ) +
1

|S|
∑
s∈S

L(fθ(xs), ys) (4.1)

The special case of one-elementary Y = {y} is called the supervised learning problem.

The special case of one-elementary Θ = {θ̂} written below is called the inference problem.

min
y∈Y

∑
s∈S

L(fθ(xs), ys) (4.2)

13
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Chapter 5

Classifying

5.1 Maps

For any finite set A 6= ∅ whose elements we seek to classify and any finite set B 6= ∅ of class labels,
we are interested in maps ϕ : A→ B that assign to every element a ∈ A precisely one class label
ϕ(a) ∈ B. Maps are precisely those subsets of ϕ ⊆ A×B that satisfy

∀a ∈ A ∃b ∈ B : (a, b) ∈ ϕ (5.1)

∀a ∈ A ∀b, b′ ∈ B : (a, b) ∈ ϕ ∧ (a, b′) ∈ ϕ⇒ b = b′ . (5.2)

They are characterized by those functions y : A×B → {0, 1} that satisfy

∀a ∈ A :
∑
b∈B

yab = 1 . (5.3)

We reduce the problem of learning and inferring maps to the problem of learning and inferring
decisions, by choosing constrained data with

S = A×B (5.4)

Y =

{
y : A×B → {0, 1}

∣∣∣∣∣ ∀a ∈ A :
∑
b∈B

yab = 1

}
. (5.5)

5.2 Linear functions

5.2.1 Data

Throughout Section 5.2, we consider some finite set V 6= ∅ and constrained data (S,X, x,Y) with
S = A×B as in (5.4), X = B × RV , and Y as in (5.5). More specifically, we assume that, for any
(a, b) ∈ A×B, the class label b is the first attribute of (a, b), i.e.,

∀a ∈ A ∀b ∈ B ∃x̂ ∈ RV : xab = (b, x̂) (5.6)

As a special case, we consider labeled data where we are given just one Y = {y} with y satisfying
the constraints (5.3).

5.2.2 Familiy of functions

Throughout Section 5.2, we consider linear functions. More specifically, we consider Θ = RB×V
and f : Θ→ RX such that

∀θ ∈ Θ ∀b ∈ B ∀x̂ ∈ RV : fθ((b, x̂)) =
∑
v∈V

θbv x̂v = 〈θb·, x̂〉 . (5.7)

15
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5.2.3 Probabilistic model

Random variables

• For any (a, b) ∈ A×B, let Xab be a random variable whose realization is a vector xab ∈ B×RV ,
called the attribute vector of (a, b).

• For any (a, b) ∈ A×B, let Yab be a random variable whose realization is a binary number
yab ∈ {0, 1}, called the decision of classifying a as b

• For any b ∈ B and any v ∈ V , let Θbv be a random variable whose realization is a real
number θbv ∈ R, called a parameter

• Let Z be a random variable whose realization is a subset z ⊆ {0, 1}A×B . For multiple label
classification, we are interested in z = Y, the set of the characteristic functions of all maps
from A to B.

Conditional independence assumptions

We assume a probability distribution that factorizes according to Bayesian net depicted below.

Xab

Yab

Z

Θbv

v ∈ V a ∈ A

b ∈ B

Factorization

These conditional independence assumptions imply the following factorizations:

• Firstly:

P (X,Y, Z,Θ) = P (Z | Y )
∏

(a,b)∈A×B

P (Yab | Xab,Θ)
∏

(b,v)∈B×V

P (Θbv)
∏

(a,b)∈A×B

P (Xab)

(5.8)

• Secondly:

P (Θ | X,Y, Z) =
P (X,Y, Z,Θ)

P (X,Y, Z)

=
P (Z | Y )P (Y | X,Θ)P (X)P (Θ)

P (Z | X,Y )P (X,Y )

=
P (Z | Y )P (Y | X,Θ)P (X)P (Θ)

P (Z | Y )P (X,Y )

=
P (Y | X,Θ)P (X)P (Θ)

P (X,Y )

∝ P (Y | X,Θ)P (Θ)

=
∏

(a,b)∈A×B

P (Yab | Xab,Θ)
∏

(b,v)∈B×V

P (Θbv) (5.9)
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• Thirdly,

P (Y | X,Z, θ) =
P (X,Y, Z,Θ)

P (X,Z,Θ)

=
P (Z | Y )P (Y | X,Θ)P (X)P (Θ)

P (X,Z,Θ)

∝ P (Z | Y )P (Y | X,Θ)

= P (Z | Y )
∏

(a,b)∈A×B

P (Yab | Xab,Θ) (5.10)

Forms

Here, we consider:

• The logistic distribution

∀(a, b) ∈ A×B : pYab|Xab,Θ(1) =
1

1 + 2−fθ(xab)
(5.11)

• A σ ∈ R+ and the normal distribution:

∀(b, v) ∈ B × V : pΘbv (θbv) =
1

σ
√

2π
e−θ

2
bv/2σ

2

(5.12)

• A uniform distribution on a subset:

∀z ⊆ {0, 1}A×B : pZ|Y (z) ∝

{
1 if y ∈ z
0 otherwise

(5.13)

Note that pZ|Y (Y) is non-zero iff the relation y−1(1) ⊆ A×B is a map.

5.2.4 Learning problem

Lemma 4 Estimating maximally probable parameters θ, given attributes x and decisions y, i.e.,

argmax
θ∈RB×V

pΘ|X,Y (θ, x, y)

is identical to the supervised learning problem w.r.t. L, R and λ such that

∀r ∈ R ∀ŷ ∈ {0, 1} : L(r, ŷ) = −ŷr + log (1 + 2r) (5.14)

∀θ ∈ Θ: R(θ) = ‖θ‖22 (5.15)

λ =
log e

2σ2
(5.16)

Moreover, this problem separates into |B| independent supervised learning problems, each
w.r.t. parameters in RV , with L and λ as above, and with

∀θ′ ∈ RV : R′(θ′) = ‖θ′‖22 (5.17)

Proof Analogous to the case of binary classification from Section 3.1, we now obtain:

argmax
θ∈RB×V

pΘ|X,Y (θ, x, y)

= argmin
θ∈RB×V

∑
(a,b)∈A×B

(
−yabfθ(xab) + log

(
1 + 2fθ(xab)

))
+

log e

2σ2
‖θ‖22 . (5.18)
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Consider the unique x′ : A×B → RV such that, for any (a, b) ∈ A×B, we have xab = (b, x′ab).
Problem (5.18) separates into |B| many l2-regularized logistic regression problems, one for each

b ∈ B, because

min
θ∈RB×V

∑
(a,b)∈A×B

(
−yab〈θb·, x′ab〉+ log

(
1 + 2〈θb·,x

′
ab〉
))

+
log e

2σ2
‖θ‖22

= min
θ∈RB×V

∑
b∈B

(∑
a∈A

(
−yab〈θb·, x′ab〉+ log

(
1 + 2〈θb·,x

′
ab〉
))

+
log e

2σ2
‖θb·‖22

)

=
∑
b∈B

min
θb·∈RV

(∑
a∈A

(
−yab〈θb·, x′ab〉+ log

(
1 + 2〈θb·,x

′
ab〉
))

+
log e

2σ2
‖θb·‖22

)
.

5.2.5 Inference problem

Lemma 5 For any constrained data as defined above, any θ ∈ RB×V and any ŷ : A×B → {0, 1},
ŷ is a solution to the inference problem

min
y∈Y

∑
(a,b)∈A×B

L(fθ(xab), yab) (5.19)

iff there exists an ϕ : A→ B such that

∀a ∈ A : ϕ(a) ∈ max
b∈B
〈θb·, x′ab〉 (5.20)

and

∀(a, b) ∈ A×B : ŷab = 1⇔ ϕ(a) = b . (5.21)

Proof ∑
(a,b)∈A×B

L(fθ(xab), yab)

=
∑

(a,b)∈A×B

(L(fθ(xab), 1) yab + L(fθ(xab), 0) (1− yab))

=
∑

(a,b)∈A×B

(L(fθ(xab), 1)− L(fθ(xab), 0)) yab + const.

=
∑

(a,b)∈A×B

(−fθ(xab)) yab by (5.14)

=
∑

(a,b)∈A×B

(−〈θb·, x′ab〉) yab xab = (b, x′ab)

=
∑
a∈A

∑
b∈B

(−〈θb·, x′ab〉) yab

5.2.6 Inference algorithm

The inference problem is solved by solving (5.20) independently for each a ∈ A. The time complexity
is O(|A||B||V |).
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