Machine Learning II

Bjoern Andres
bjoern.andres@tu-dresden.de
Machine Learning for Computer Vision
Faculty of Computer Science
TU Dresden

Version 0.4β
Copyright © 2020 onwards. All rights reserved.

Contents

1 Introduction 5
1.1 Notation 5
2 Supervised learning 7
2.1 Intuition 7
2.2 Definition 7
3 Deciding 9
3.1 Linear functions 9
3.1.1 Data 9
3.1.2 Familiy of functions 9
3.1.3 Probabilistic model 9
3.1.4 Learning problem 10
3.1.5 Inference problem 11
3.1.6 Inference algorithm 11
4 Semi-supervised and unsupervised learning 13
4.1 Intuition 13
4.2 Definition 13
5 Classifying 15
5.1 Maps 15
5.2 Linear functions 15
5.2.1 Data 15
5.2.2 Familiy of functions 15
5.2.3 Probabilistic model 16
5.2.4 Learning problem 17
5.2.5 Inference problem 18
5.2.6 Inference algorithm 18

Chapter 1

Introduction

1.1 Notation

We shall use the following notation:

- We write "iff" as shorthand for "if and only if"
- For any $m \in \mathbb{N}$, we define $[m]=\{0, \ldots, m-1\}$.
- For any set A, we denote by 2^{A} the power set of A
- For any set A and any $m \in \mathbb{N}$, we denote by $\binom{A}{m}=\left\{B \in 2^{A}| | B \mid=m\right\}$ the set of all m-elementary subsets of A
- For any sets A, B, we denote by B^{A} the set of all maps from A to B

Chapter 2

Supervised learning

2.1 Intuition

Informally, supervised learning is the problem of finding in a family $g: \Theta \rightarrow Y^{X}$ of functions, one $g_{\theta}: X \rightarrow Y$ that minimizes a weighted sum of two objectives:

1. g deviates little from a finite set $\left\{\left(x_{s}, y_{s}\right)\right\}_{s \in S}$ of input-output-pairs
2. g has low complexity, as quantified by a function $R: \Theta \rightarrow \mathbb{R}_{0}^{+}$

We note that the family g can have meaning beyond a mere parameterization of functions from X to Y. For instance, Θ can be a set of forms, g the functions defined by these forms, and R the length of forms. In that case, supervised learning is really an optimization problem over forms of functions, and R penalizes the complexity of these forms. Moreover, g can be chosen so as to constrain the set of functions from X to Y in the first place.

We concentrate exclusively on the special case where Y is finite. In fact, we concentrate on the case where $Y=\{0,1\}$ in this chapter and reduce more general cases to this case in Chapter 4.

Moreover, we allow ourselves to take a detour by not optimizing over a family $g: \Theta \rightarrow\{0,1\}^{X}$ directly but instead optimizing over a family $f: \Theta \rightarrow \mathbb{R}^{X}$ and defining g w.r.t. f via a function $L: \mathbb{R} \times\{0,1\} \rightarrow \mathbb{R}_{0}^{+}$, called a loss function, such that

$$
\begin{equation*}
\forall \theta \in \Theta \forall x \in X: \quad g_{\theta}(x)=\underset{\hat{y} \in\{0,1\}}{\operatorname{argmin}} L\left(f_{\theta}(x), \hat{y}\right) . \tag{2.1}
\end{equation*}
$$

2.2 Definition

Definition 1 For any $S \neq \varnothing$ finite, called a set of samples, any $X \neq \varnothing$, called an attribute space and any $x: S \rightarrow X$, the tuple (S, X, x) is called unlabeled data.

For any $y: S \rightarrow\{0,1\}$, given in addition and called a labeling, the tuple (S, X, x, y) is called labeled data.

Definition 2 For any labeled data $T=(S, X, x, y)$, any $\Theta \neq \varnothing$ and family of functions $f: \Theta \rightarrow \mathbb{R}^{X}$, any $R: \Theta \rightarrow \mathbb{R}_{0}^{+}$, called a regularizer, any $L: \mathbb{R} \times\{0,1\} \rightarrow \mathbb{R}_{0}^{+}$, called a loss function, and any $\lambda \in \mathbb{R}_{0}^{+}$, called a regularization parameter, the instance of the supervised learning problem w.r.t. T, Θ, f, R, L and λ is defined as

$$
\begin{equation*}
\inf _{\theta \in \Theta} \quad \lambda R(\theta)+\frac{1}{|S|} \sum_{s \in S} L\left(f_{\theta}\left(x_{s}\right), y_{s}\right) \tag{2.2}
\end{equation*}
$$

Definition 3 For any unlabeled data $T=(S, X, x)$, any $\hat{f}: X \rightarrow \mathbb{R}$ and any $L: \mathbb{R} \times\{0,1\} \rightarrow \mathbb{R}_{0}^{+}$, the instance of the inference problem w.r.t. T, f and L is defined as

$$
\begin{equation*}
\min _{y^{\prime} \in\{0,1\}^{S}} \sum_{s \in S} L\left(\hat{f}\left(x_{s}\right), y_{s}^{\prime}\right) \tag{2.3}
\end{equation*}
$$

Lemma 1 The solutions to the inference problem are the $y: S \rightarrow\{0,1\}$ such that

$$
\begin{equation*}
\forall s \in S: \quad y_{s} \in \underset{\hat{y} \in\{0,1\}}{\operatorname{argmin}} L\left(\hat{f}\left(x_{s}\right), \hat{y}\right) \tag{2.4}
\end{equation*}
$$

Moreover, if

$$
\begin{equation*}
\hat{f}(X) \subseteq\{0,1\} \tag{2.5}
\end{equation*}
$$

and

$$
\forall r \in \mathbb{R} \forall \hat{y} \in\{0,1\}: \quad L(r, \hat{y})= \begin{cases}0 & \text { if } r=\hat{y} \tag{2.6}\\ 1 & \text { otherwise }\end{cases}
$$

then

$$
\begin{equation*}
\forall s \in S: \quad y_{s}^{\prime}=\hat{f}\left(x_{s}\right) \tag{2.7}
\end{equation*}
$$

Proof Generally, we have

$$
\begin{equation*}
\min _{y \in\{0,1\}^{S}} \sum_{s \in S} L\left(\hat{f}\left(x_{s}\right), y_{s}\right)=\sum_{s \in S} \min _{y_{s} \in\{0,1\}} L\left(\hat{f}\left(x_{s}\right), y_{s}\right) \tag{2.8}
\end{equation*}
$$

By (2.5), $L\left(\hat{f}\left(x_{s}\right), \hat{f}\left(x_{s}\right)\right)$ is well-defined for any $s \in S$. By (2.6) and non-negativity of L, we have

$$
\begin{equation*}
\forall y_{s} \in\{0,1\}: \quad L\left(\hat{f}\left(x_{s}\right), \hat{f}\left(x_{s}\right)\right)=0 \leq L\left(\hat{f}\left(x_{s}\right), y_{s}\right) \tag{2.9}
\end{equation*}
$$

Thus, $y_{s}=\hat{f}\left(x_{s}\right)$ is optimal for any $s \in S$.
We note that the exact supervised learning problem formalizes a philosophical principle known as Ockham's razor.

Chapter 3

Deciding

3.1 Linear functions

3.1.1 Data

Throughout Section 3.1, we consider real attributes. More specifically, we consider some finite set $V \neq \varnothing$ and labeled data $T=(S, X, x, y)$ with $X=\mathbb{R}^{V}$. Hence, $x: S \rightarrow \mathbb{R}^{V}$ and $y: S \rightarrow\{0,1\}$.

3.1.2 Familiy of functions

Throughout Section 3.1, we consider linear functions. More specifically, we consider $\Theta=\mathbb{R}^{V}$ and $f: \Theta \rightarrow \mathbb{R}^{X}$ such that

$$
\begin{equation*}
\forall \theta \in \Theta \forall \hat{x} \in X: \quad f_{\theta}(\hat{x})=\langle\theta, \hat{x}\rangle . \tag{3.1}
\end{equation*}
$$

3.1.3 Probabilistic model

Random variables

- For any $s \in S$, let X_{s} be a random variable whose realization is a vector $x_{s} \in \mathbb{R}^{V}$, called the attribute vector of s
- For any $s \in S$, let Y_{s} be a random variable whose realization is a binary number $y_{s} \in\{0,1\}$, called the label of s
- For any $v \in V$, let Θ_{v} be a random variable whose realization is a real number $\theta_{v} \in \mathbb{R}$, called a parameter

Conditional independence assumptions

We assume a probability distribution that factorizes according to the Bayesian net depicted below.

Factorization

- Firstly:

$$
\begin{equation*}
P(X, Y, \Theta)=\prod_{s \in S} P\left(Y_{s} \mid X_{s}, \Theta\right) P\left(X_{s}\right) \prod_{v \in V} P\left(\Theta_{v}\right) \tag{3.2}
\end{equation*}
$$

- Secondly:

$$
\begin{align*}
P(\Theta \mid X, Y) & =\frac{P(X, Y, \Theta)}{P(X, Y)} \\
& =\frac{P(Y \mid X, \Theta) P(X) P(\Theta)}{P(X, Y)} \\
& \propto P(Y \mid X, \Theta) P(\Theta) \\
& =\prod_{s \in S} P\left(Y_{s} \mid X_{s}, \Theta\right) \prod_{v \in V} P\left(\Theta_{v}\right) \tag{3.3}
\end{align*}
$$

Forms

We consider:

- The logistic distribution

$$
\begin{equation*}
\forall s \in S: \quad p_{Y_{s} \mid X_{s}, \Theta}(1)=\frac{1}{1+2^{-f_{\theta}\left(x_{s}\right)}} \tag{3.4}
\end{equation*}
$$

- $\mathrm{A} \sigma \in \mathbb{R}^{+}$and the normal distribution:

$$
\begin{equation*}
\forall v \in V: \quad p_{\Theta_{v}}\left(\theta_{v}\right)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\theta_{v}^{2} / 2 \sigma^{2}} \tag{3.5}
\end{equation*}
$$

3.1.4 Learning problem

Lemma 2 (Logistic regression) Estimating maximally probable parameters θ, given attributes x and labels y, i.e.,

$$
\underset{\theta \in \mathbb{R}^{m}}{\operatorname{argmax}} \quad p_{\Theta \mid X, Y}(\theta, x, y)
$$

is identical to the supervised learning problem w.r.t. L, R and λ such that

$$
\begin{array}{rlrl}
\forall r \in \mathbb{R} \forall \hat{y} \in\{0,1\}: & L(r, \hat{y}) & =-\hat{y} r+\log \left(1+2^{r}\right) \\
\forall \theta \in \Theta: & R(\theta) & =\|\theta\|_{2}^{2} \\
\lambda & =\frac{\log e}{2 \sigma^{2}} \tag{3.8}
\end{array}
$$

Proof Firstly,

$$
\begin{align*}
& \stackrel{(3.3)}{\underset{\theta \in \mathbb{R}^{m}}{\operatorname{argmax}}} \underset{\theta \in \mathbb{R}^{m}}{\operatorname{argmax}} p_{\Theta \mid X, Y}(\theta, x, y) \\
&=\underset{\theta \in S}{\operatorname{argmax}} \prod_{\theta \in \mathbb{R}^{m}} p_{Y_{s} \mid X_{s}, \Theta}\left(y_{s}, x_{s}, \theta\right) \prod_{v \in V} p_{\Theta_{v}}\left(\theta_{v}\right) \\
& \sum_{s \in S} \log p_{Y_{s} \mid X_{s}, \Theta}\left(y_{s}, x_{s}, \theta\right)+\sum_{v \in V} \log p_{\Theta_{v}}\left(\theta_{v}\right) \tag{3.9}
\end{align*}
$$

Substituting in (3.9) the linearization

$$
\begin{align*}
& \log p_{Y_{s} \mid X_{s}, \Theta}\left(y_{s}, x_{s}, \theta\right) \\
= & y_{s} \log p_{Y_{s} \mid X_{s}, \Theta}\left(1, x_{s}, \theta\right)+\left(1-y_{s}\right) \log p_{Y_{s} \mid X_{s}, \Theta}\left(0, x_{s}, \theta\right) \\
= & y_{s} \log \frac{p_{Y_{s} \mid X_{s}, \Theta}\left(1, x_{s}, \theta\right)}{p_{Y_{s} \mid X_{s}, \Theta}\left(0, x_{s}, \theta\right)}+\log p_{Y_{s} \mid X_{s}, \Theta}\left(0, x_{s}, \theta\right) \tag{3.10}
\end{align*}
$$

as well as (3.4) and (3.5) yields the form (3.11) below that is called the instance of the l_{2}-regularized logistic regression problem with respect to x, y and σ.

$$
\begin{equation*}
\underset{\theta \in \mathbb{R}^{m}}{\operatorname{argmin}} \sum_{s \in S}\left(-y_{s}\left\langle\theta, x_{s}\right\rangle+\log \left(1+2^{\left\langle\theta, x_{s}\right\rangle}\right)\right)+\frac{\log e}{2 \sigma^{2}}\|\theta\|_{2}^{2} \tag{3.11}
\end{equation*}
$$

Exercise 1 a) Derive (3.11) from (3.9) using (3.10), (3.4) and (3.5)
b) Is the objective function of (3.11) convex?

3.1.5 Inference problem

Lemma 3 Estimating maximally probable labels y, given attributes x^{\prime} and parameters θ, i.e.,

$$
\begin{equation*}
\underset{y \in\{0,1\}^{S}}{\operatorname{argmax}} \quad p_{Y \mid X, \Theta}\left(y, x^{\prime}, \theta\right) \tag{3.12}
\end{equation*}
$$

is identical to the inference problem w.r.t. f and L. It has the solution

$$
\forall s \in S^{\prime}: \quad y_{s}= \begin{cases}1 & \text { if } f_{\theta}\left(x_{s}^{\prime}\right)>0 \tag{3.13}\\ 0 & \text { otherwise }\end{cases}
$$

Proof Firstly,

$$
\begin{aligned}
& \underset{y \in\{0,1\}^{S^{\prime}}}{\operatorname{argmax}} \\
&=\underset{y \in\{0,1\}^{S^{\prime}}}{\operatorname{argmax}} p_{Y \mid X, \Theta}\left(y, x^{\prime}, \theta\right) \\
&=\underset{y \in S^{\prime}}{\operatorname{argmax}} p_{Y_{s} \mid X_{s}, \Theta}\left(y_{s}, x_{s}^{\prime}, \theta\right) \\
&=\underset{y \in\{ \}^{S^{\prime}}}{\operatorname{argmax}} \sum_{s \in S^{\prime}} \log p_{Y_{s} \mid X_{s}, \Theta}\left(y_{s}, x_{s}^{\prime}, \theta\right) \\
&=\underset{y \in\{0,1\}^{S^{\prime}}}{\operatorname{argmin}} \sum_{s \in S^{\prime}}\left(y_{s} \log \frac{p_{Y_{s} \mid X_{s}, \Theta}\left(1, x_{s}^{\prime}, \theta\right)}{p_{Y_{s} \mid X_{s}, \Theta}\left(0, x_{s}^{\prime}, \theta\right)}+\log p_{Y_{s} \mid X_{s}, \Theta}\left(0, x_{s}^{\prime}, \theta\right)\right) \\
&=\underset{y \in\{0,1\}^{S^{\prime}}}{\operatorname{argmin}} \sum_{s \in S^{\prime}}\left(-y_{s} f_{\theta}\left(x_{s}^{\prime}\right)+\log \left(1+2^{f_{\theta}\left(x_{s}^{\prime}\right)}\right)\right) \\
& y \in\{0,1\}^{S^{\prime}} \sum_{s \in S^{\prime}} L\left(f_{\theta}\left(x_{s}^{\prime}\right), y_{s}\right) .
\end{aligned}
$$

Secondly,

$$
\min _{y \in\{0,1\}\}^{S^{\prime}}} \sum_{s \in S^{\prime}}\left(-y_{s} f_{\theta}\left(x_{s}^{\prime}\right)+\log \left(1+2^{f_{\theta}\left(x_{s}^{\prime}\right)}\right)\right)=\sum_{s \in S^{\prime}} \max _{y_{s} \in\{0,1\}} y_{s} f_{\theta}\left(x_{s}^{\prime}\right)
$$

3.1.6 Inference algorithm

The inference problem is solved by computing independently for each $s \in S^{\prime}$ the label

$$
y_{s}= \begin{cases}1 & \text { if }\left\langle\theta, x_{s}^{\prime}\right\rangle>0 \tag{3.14}\\ 0 & \text { otherwise }\end{cases}
$$

The time complexity is $O\left(|V|\left|S^{\prime}\right|\right)$.

Chapter 4

Semi-supervised and unsupervised learning

4.1 Intuition

So far, we have considered learning problems w.r.t. labeled data (S, X, x, y) where, for every $s \in S$, a label $y_{s} \in\{0,1\}$ is given, and inference problems w.r.t. unlabeled data $\left(S^{\prime}, X^{\prime}, x\right)$ where no label is given and every combination of labels $y^{\prime}: S \rightarrow\{0,1\}$ is a feasible solution.

Next, we consider learning problems where not every label is given and inference problems where not every combination of labels is feasible. Unlike before, the data we look at in both problems coincides, consisting of tuples (S, X, x, \mathcal{Y}) where $\mathcal{Y} \subseteq\{0,1\}^{S}$ is a set of feasible labelings. In particular, $\mathcal{Y}=\{0,1\}^{S}$ is the special case of unlabeled data, and $|\mathcal{Y}|=1$ is the special case of labeled data. Non-trivial choices of \mathcal{Y} allow us to express problems of learning and inferring finite structures such as maps (Chapter 5).

4.2 Definition

Definition 4 For any $S \neq \varnothing$ finite, called a set of samples, any $X \neq \varnothing$, called an attribute space, any $x: S \rightarrow X$ and any $\varnothing \neq \mathcal{Y} \subseteq\{0,1\}^{S}$, called a set of feasible labelings, the tuple $T=(S, X, x, \mathcal{Y})$ is called constrained data.

Definition 5 For any constrained data $T=(S, X, x, \mathcal{Y})$, any $\Theta \neq \varnothing$ and family of functions $f: \Theta \rightarrow \mathbb{R}^{X}$, any $R: \Theta \rightarrow \mathbb{R}_{0}^{+}$, called a regularizer, any $L: \mathbb{R} \times\{0,1\} \rightarrow \mathbb{R}_{0}^{+}$, called a loss function and any $\lambda \in \mathbb{R}_{0}^{+}$, called a regularization parameter, the instance of the learning and inference problem w.r.t. T, Θ, f, R, L and λ is defined as

$$
\begin{equation*}
\min _{y \in \mathcal{Y}} \inf _{\theta \in \Theta} \quad \lambda R(\theta)+\frac{1}{|S|} \sum_{s \in S} L\left(f_{\theta}\left(x_{s}\right), y_{s}\right) \tag{4.1}
\end{equation*}
$$

The special case of one-elementary $\mathcal{Y}=\{y\}$ is called the supervised learning problem.
The special case of one-elementary $\Theta=\{\hat{\theta}\}$ written below is called the inference problem.

$$
\begin{equation*}
\min _{y \in \mathcal{Y}} \sum_{s \in S} L\left(f_{\theta}\left(x_{s}\right), y_{s}\right) \tag{4.2}
\end{equation*}
$$

Chapter 5

Classifying

5.1 Maps

For any finite set $A \neq \varnothing$ whose elements we seek to classify and any finite set $B \neq \varnothing$ of class labels, we are interested in maps $\varphi: A \rightarrow B$ that assign to every element $a \in A$ precisely one class label $\varphi(a) \in B$. Maps are precisely those subsets of $\varphi \subseteq A \times B$ that satisfy

$$
\begin{align*}
\forall a \in A \exists b \in B: & (a, b) \in \varphi \tag{5.1}\\
\forall a \in A \forall b, b^{\prime} \in B: & (a, b) \in \varphi \wedge\left(a, b^{\prime}\right) \in \varphi \Rightarrow b=b^{\prime} \tag{5.2}
\end{align*}
$$

They are characterized by those functions $y: A \times B \rightarrow\{0,1\}$ that satisfy

$$
\begin{equation*}
\forall a \in A: \quad \sum_{b \in B} y_{a b}=1 . \tag{5.3}
\end{equation*}
$$

We reduce the problem of learning and inferring maps to the problem of learning and inferring decisions, by choosing constrained data with

$$
\begin{align*}
& S=A \times B \tag{5.4}\\
& \mathcal{Y}=\left\{y: A \times B \rightarrow\{0,1\} \mid \forall a \in A: \sum_{b \in B} y_{a b}=1\right\} . \tag{5.5}
\end{align*}
$$

5.2 Linear functions

5.2.1 Data

Throughout Section 5.2, we consider some finite set $V \neq \varnothing$ and constrained data (S, X, x, \mathcal{Y}) with $S=A \times B$ as in (5.4), $X=B \times \mathbb{R}^{V}$, and \mathcal{Y} as in (5.5). More specifically, we assume that, for any $(a, b) \in A \times B$, the class label b is the first attribute of (a, b), i.e.,

$$
\begin{equation*}
\forall a \in A \forall b \in B \exists \hat{x} \in \mathbb{R}^{V}: \quad x_{a b}=(b, \hat{x}) \tag{5.6}
\end{equation*}
$$

As a special case, we consider labeled data where we are given just one $\mathcal{Y}=\{y\}$ with y satisfying the constraints (5.3).

5.2.2 Familiy of functions

Throughout Section 5.2, we consider linear functions. More specifically, we consider $\Theta=\mathbb{R}^{B \times V}$ and $f: \Theta \rightarrow \mathbb{R}^{X}$ such that

$$
\begin{equation*}
\forall \theta \in \Theta \forall b \in B \forall \hat{x} \in \mathbb{R}^{V}: \quad f_{\theta}((b, \hat{x}))=\sum_{v \in V} \theta_{b v} \hat{x}_{v}=\left\langle\theta_{b} ., \hat{x}\right\rangle \tag{5.7}
\end{equation*}
$$

5.2.3 Probabilistic model

Random variables

- For any $(a, b) \in A \times B$, let $X_{a b}$ be a random variable whose realization is a vector $x_{a b} \in B \times \mathbb{R}^{V}$, called the attribute vector of (a, b).
- For any $(a, b) \in A \times B$, let $Y_{a b}$ be a random variable whose realization is a binary number $y_{a b} \in\{0,1\}$, called the decision of classifying a as b
- For any $b \in B$ and any $v \in V$, let $\Theta_{b v}$ be a random variable whose realization is a real number $\theta_{b v} \in \mathbb{R}$, called a parameter
- Let Z be a random variable whose realization is a subset $z \subseteq\{0,1\}^{A \times B}$. For multiple label classification, we are interested in $z=\mathcal{Y}$, the set of the characteristic functions of all maps from A to B.

Conditional independence assumptions

We assume a probability distribution that factorizes according to Bayesian net depicted below.

Factorization

These conditional independence assumptions imply the following factorizations:

- Firstly:

$$
\begin{equation*}
P(X, Y, Z, \Theta)=P(Z \mid Y) \prod_{(a, b) \in A \times B} P\left(Y_{a b} \mid X_{a b}, \Theta\right) \prod_{(b, v) \in B \times V} P\left(\Theta_{b v}\right) \prod_{(a, b) \in A \times B} P\left(X_{a b}\right) \tag{5.8}
\end{equation*}
$$

- Secondly:

$$
\begin{align*}
P(\Theta \mid X, Y, Z) & =\frac{P(X, Y, Z, \Theta)}{P(X, Y, Z)} \\
& =\frac{P(Z \mid Y) P(Y \mid X, \Theta) P(X) P(\Theta)}{P(Z \mid X, Y) P(X, Y)} \\
& =\frac{P(Z \mid Y) P(Y \mid X, \Theta) P(X) P(\Theta)}{P(Z \mid Y) P(X, Y)} \\
& =\frac{P(Y \mid X, \Theta) P(X) P(\Theta)}{P(X, Y)} \\
& \propto P(Y \mid X, \Theta) P(\Theta) \\
& =\prod_{(a, b) \in A \times B} P\left(Y_{a b} \mid X_{a b}, \Theta\right) \prod_{(b, v) \in B \times V} P\left(\Theta_{b v}\right) \tag{5.9}
\end{align*}
$$

- Thirdly,

$$
\begin{align*}
P(Y \mid X, Z, \theta) & =\frac{P(X, Y, Z, \Theta)}{P(X, Z, \Theta)} \\
& =\frac{P(Z \mid Y) P(Y \mid X, \Theta) P(X) P(\Theta)}{P(X, Z, \Theta)} \\
& \propto P(Z \mid Y) P(Y \mid X, \Theta) \\
& =P(Z \mid Y) \prod_{(a, b) \in A \times B} P\left(Y_{a b} \mid X_{a b}, \Theta\right) \tag{5.10}
\end{align*}
$$

Forms

Here, we consider:

- The logistic distribution

$$
\begin{equation*}
\forall(a, b) \in A \times B: \quad p_{Y_{a b} \mid X_{a b}, \Theta}(1)=\frac{1}{1+2^{-f_{\theta}\left(x_{a b}\right)}} \tag{5.11}
\end{equation*}
$$

- A $\sigma \in \mathbb{R}^{+}$and the normal distribution:

$$
\begin{equation*}
\forall(b, v) \in B \times V: \quad p_{\Theta_{b v}}\left(\theta_{b v}\right)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\theta_{b v}^{2} / 2 \sigma^{2}} \tag{5.12}
\end{equation*}
$$

- A uniform distribution on a subset:

$$
\forall z \subseteq\{0,1\}^{A \times B}: \quad p_{Z \mid Y}(z) \propto \begin{cases}1 & \text { if } y \in z \tag{5.13}\\ 0 & \text { otherwise }\end{cases}
$$

Note that $p_{Z \mid Y}(\mathcal{Y})$ is non-zero iff the relation $y^{-1}(1) \subseteq A \times B$ is a map.

5.2.4 Learning problem

Lemma 4 Estimating maximally probable parameters θ, given attributes x and decisions y, i.e.,

$$
\underset{\theta \in \mathbb{R}^{B \times V}}{\operatorname{argmax}} \quad p_{\Theta \mid X, Y}(\theta, x, y)
$$

is identical to the supervised learning problem w.r.t. L, R and λ such that

$$
\begin{array}{rlrl}
\forall r \in \mathbb{R} \forall \hat{y} \in\{0,1\}: & L(r, \hat{y}) & =-\hat{y} r+\log \left(1+2^{r}\right) \\
\forall \theta \in \Theta: & R(\theta) & =\|\theta\|_{2}^{2} \\
\lambda & =\frac{\log e}{2 \sigma^{2}} \tag{5.16}
\end{array}
$$

Moreover, this problem separates into $|B|$ independent supervised learning problems, each w.r.t. parameters in \mathbb{R}^{V}, with L and λ as above, and with

$$
\begin{equation*}
\forall \theta^{\prime} \in \mathbb{R}^{V}: \quad R^{\prime}\left(\theta^{\prime}\right)=\left\|\theta^{\prime}\right\|_{2}^{2} \tag{5.17}
\end{equation*}
$$

Proof Analogous to the case of binary classification from Section 3.1, we now obtain:

$$
\begin{align*}
\underset{\theta \in \mathbb{R}^{B \times V}}{\operatorname{argmax}} & p_{\Theta \mid X, Y}(\theta, x, y) \\
= & \underset{\theta \in \mathbb{R}^{B \times V}}{\operatorname{argmin}} \tag{5.18}
\end{align*} \sum_{(a, b) \in A \times B}\left(-y_{a b} f_{\theta}\left(x_{a b}\right)+\log \left(1+2^{f_{\theta}\left(x_{a b}\right)}\right)\right)+\frac{\log e}{2 \sigma^{2}}\|\theta\|_{2}^{2} . .
$$

Consider the unique $x^{\prime}: A \times B \rightarrow \mathbb{R}^{V}$ such that, for any $(a, b) \in A \times B$, we have $x_{a b}=\left(b, x_{a b}^{\prime}\right)$.
Problem (5.18) separates into $|B|$ many l_{2}-regularized logistic regression problems, one for each $b \in B$, because

$$
\begin{aligned}
& \min _{\theta \in \mathbb{R}^{B \times V}} \sum_{(a, b) \in A \times B}\left(-y_{a b}\left\langle\theta_{b}, x_{a b}^{\prime}\right\rangle+\log \left(1+2^{\left\langle\theta_{b}, x_{a b}^{\prime}\right\rangle}\right)\right)+\frac{\log e}{2 \sigma^{2}}\|\theta\|_{2}^{2} \\
= & \min _{\theta \in \mathbb{R}^{B \times V}} \sum_{b \in B}\left(\sum_{a \in A}\left(-y_{a b}\left\langle\theta_{b}, x_{a b}^{\prime}\right\rangle+\log \left(1+2^{\left\langle\theta_{b}, x_{a b}^{\prime}\right\rangle}\right)\right)+\frac{\log e}{2 \sigma^{2}}\left\|\theta_{b} \cdot\right\|_{2}^{2}\right) \\
= & \sum_{b \in B} \min _{\theta_{b} \in \mathbb{R}^{V}}\left(\sum_{a \in A}\left(-y_{a b}\left\langle\theta_{b}, x_{a b}^{\prime}\right\rangle+\log \left(1+2^{\left\langle\theta_{b}, x_{a b}^{\prime}\right\rangle}\right)\right)+\frac{\log e}{2 \sigma^{2}}\left\|\theta_{b} \cdot\right\|_{2}^{2}\right) .
\end{aligned}
$$

5.2.5 Inference problem

Lemma 5 For any constrained data as defined above, any $\theta \in \mathbb{R}^{B \times V}$ and any $\hat{y}: A \times B \rightarrow\{0,1\}$, \hat{y} is a solution to the inference problem

$$
\begin{equation*}
\min _{y \in \mathcal{Y}} \sum_{(a, b) \in A \times B} L\left(f_{\theta}\left(x_{a b}\right), y_{a b}\right) \tag{5.19}
\end{equation*}
$$

iff there exists an $\varphi: A \rightarrow B$ such that

$$
\begin{equation*}
\forall a \in A: \quad \varphi(a) \in \max _{b \in B}\left\langle\theta_{b .}, x_{a b}^{\prime}\right\rangle \tag{5.20}
\end{equation*}
$$

and

$$
\begin{equation*}
\forall(a, b) \in A \times B: \quad \hat{y}_{a b}=1 \Leftrightarrow \varphi(a)=b \tag{5.21}
\end{equation*}
$$

Proof

$$
\begin{aligned}
& \sum_{(a, b) \in A \times B} L\left(f_{\theta}\left(x_{a b}\right), y_{a b}\right) \\
= & \sum_{(a, b) \in A \times B}\left(L\left(f_{\theta}\left(x_{a b}\right), 1\right) y_{a b}+L\left(f_{\theta}\left(x_{a b}\right), 0\right)\left(1-y_{a b}\right)\right) \\
= & \sum_{(a, b) \in A \times B}\left(L\left(f_{\theta}\left(x_{a b}\right), 1\right)-L\left(f_{\theta}\left(x_{a b}\right), 0\right)\right) y_{a b}+\text { const. } \\
=\sum_{(a, b) \in A \times B}\left(-f_{\theta}\left(x_{a b}\right)\right) y_{a b} & \\
= & \sum_{(a, b) \in A \times B}\left(-\left\langle\theta_{b}, x_{a b}^{\prime}\right\rangle\right) y_{a b} \\
= & \sum_{a \in A} \sum_{b \in B}\left(-\left\langle\theta_{b .}, x_{a b}^{\prime}\right\rangle\right) y_{a b}
\end{aligned} \quad x_{a b}=\left(b, x_{a b}^{\prime}\right)
$$

5.2.6 Inference algorithm

The inference problem is solved by solving (5.20) independently for each $a \in A$. The time complexity is $O(|A||B||V|)$.

Bibliography

