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6.3.5 Inference problem

Lemma 9 Estimating maximally probable decisions y, given attributes x and parameters θ, i.e.

argmax
y∈{0,1}S

pY|X ,Θ(x, y, θ) (6.22)

is identical to the structured inference problem with Ĥ(x, y) = Hθ(x, y).

Exercise 5 Prove Lemma 9.

6.3.6 Learning algorithm

On the on hand, the supervised structured learning problem can be solved exactly by means of the
steepest descent algorithm, due to its convexity (Lemma 8).

Algorithm 1 Steepest descent with tolerance parameter ε ∈ R+
0

θ := 0
repeat

d := ∇θL(Hθ(x, ·), y)
η := argminη′∈R L(Hθ−η′d(x, ·), y) (line search)
θ := θ − ηd
if ‖d‖ < ε

return θ

On the other hand, the time complexity of computing the gradient is O(2|S|), due to the
summations involved in computing the partition function Z(x, θ) and expectation values (6.19).
More specifically, computing a derivative
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=
∑
f∈F

∑
y′
S(f)
∈{0,1}S(f)

ϕfj(xf , y
′
S(f)) pYS(f)|X ,Θ(y′S(f) | x, θ) (6.24)

=
∑
f∈F

Ey′
S(f)
∼pYS(f)|X ,Θ

(ϕfj(xf , y
′
S(f))) (6.25)

requires computing

• the partition function

Z(x, θ) =
∑

y′∈{0,1}S
e−〈θ,ξ(x,y

′)〉 (6.26)
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• for every factor f ∈ F , the so-called factor marginal

pYS(f)|X ,Θ(y′S(f) | x, θ) =
1

Z(x, θ)

∑
y′
S\S(f)

∈{0,1}S\S(f)

e−〈θ,ξ(x,y
′)〉 (6.27)

• for every factor f ∈ F , the expectation value∑
y′
S(f)
∈{0,1}S(f)

ϕfj(xf , y
′
S(f)) pYS(f)|X ,Θ(y′S(f) | x, θ) . (6.28)

In the special case where the degree maxf∈F S(f) of the conditional graphical model is bounded
by a constant, computing (6.28) from the factor marginal takes constant time. The challenge in
(6.27) or all (6.26) is to sum the function

ψθ(x, y
′) := e−〈θ,ξ(x,y

′)〉 (6.29)

over assignments to some (6.27) or all (6.26) variables y′. Defining

ψfθ(xf , y
′
S(f)) = e−〈θ,ϕf (xf ,y

′
S(f))〉 (6.30)

and exploiting factorization (6.6), we obtain

e−〈θ,ξ(x,y
′)〉

= e−
∑
f∈F 〈θ,ϕf (xf ,yS(f))〉 (6.31)

=
∏
f∈F

e−〈θ,ϕf (xf ,yS(f))〉 (6.32)

=
∏
f∈F

ψfθ(xf , yS(f)) . (6.33)

Thus, the challenge in (6.27) and (6.26) is to compute a sum of a product of functions. Specifically:

Z(x, θ) =
∑

y′∈{0,1}S

∏
f∈F

ψfθ(xf , yS(f)) (6.34)

pYS(f)|X ,Θ(y′S(f) | x, θ) =
1

Z(x, θ)

∑
y′
S\S(f)

∈{0,1}S\S(f)

∏
f∈F

ψfθ(xf , yS(f)) (6.35)

One approach to tackle this problem is to sum over variables recursively. In order to avoid
redundant computation, Kschischang et al. (2001) define partial sums:

Definition 13 (Kschischang et al. (2001)) For any variable node s ∈ S and any factor node
f ∈ F , the functions

ms→f ,mf→s : {0, 1} → R , (6.36)

called messages, are defined such that for all ys ∈ {0, 1}:

ms→f (ys) =
∏

f ′∈F (s)\{f}

mf ′→s(ys) (6.37)

mf→s(ys) =
∑

yS(f)\{s}

ψfθ(xf , yS(f))
∏

s′∈S(f)\{s}

ms′→f (ys′) (6.38)
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Lemma 10 If the factor graph is acyclic, messages are defined recursively by (6.37) and (6.38),
beginning with the messages from leaves. Moreover, for any s ∈ S and any f ∈ F :

Z(x, θ) =
∑

ys∈{0,1}

∏
f ′∈F (s)

mf ′→s(ys) (6.39)

pYS(f)|X ,Θ(y′S(f) | x, θ) =
1

Z(x, θ)
ψfθ(xf , yS(f))

∏
s′∈S(f)

ms′→f (ys′) (6.40)

Exercise 6 Prove Lemma 10.

The recursive computation of messages is known as message passing .
If the factor graph is acylic, the supervised structured learning problem can be solved efficiently

by means of the steepest descent algorithm and message passing, by Lemma 8 and Lemma 10.
If the factor graph is cyclic, the definition of messages by (6.37) and (6.38) is cyclic as well. The

partition function and marginals cannot be computed by message passing in general. A heuristic
without guarantee of correctness or even convergence is to initialize all messages as normalized
constant functions and update messages according to some schedule, e.g., synchronously. This
heuristic is known as loopy belief propagation and has proven suitable for some applications.
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