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Chapter 1

Introduction

1.1 Notation

We shall use the following notation:

• We write “iff” as shorthand for “if and only if”

• For any m ∈ N, we define [m] = {0, . . . ,m− 1}.
• For any set A, we denote by 2A the power set of A

• For any set A and any m ∈ N, we denote by
(
A
m

)
= {B ∈ 2A | |B| = m} the set of all

m-elementary subsets of A

• For any sets A,B, we denote by BA the set of all maps from A to B

5
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Chapter 2

Supervised learning

2.1 Intuition

Informally, supervised learning is the problem of finding in a family g : Θ→ Y X of functions, one
gθ : X → Y that minimizes a weighted sum of two objectives:

1. g deviates little from a finite set {(xs, ys)}s∈S of input-output-pairs

2. g has low complexity, as quantified by a function R : Θ→ R+
0

We note that the family g can have meaning beyond a mere parameterization of functions from
X to Y . For instance, Θ can be a set of forms, g the functions defined by these forms, and R the
length of forms. In that case, supervised learning is really an optimization problem over forms
of functions, and R penalizes the complexity of these forms. Moreover, g can be chosen so as to
constrain the set of functions from X to Y in the first place.

We concentrate exclusively on the special case where Y is finite. In fact, we concentrate on the
case where Y = {0, 1} in this chapter and reduce more general cases to this case in Chapter 4.

Moreover, we allow ourselves to take a detour by not optimizing over a family g : Θ→ {0, 1}X
directly but instead optimizing over a family f : Θ→ RX and defining g w.r.t. f via a function
L : R× {0, 1} → R+

0 , called a loss function, such that

∀θ ∈ Θ ∀x ∈ X : gθ(x) = argmin
ŷ∈{0,1}

L(fθ(x), ŷ) . (2.1)

2.2 Definition

Definition 1 For any S 6= ∅ finite, called a set of samples, any X 6= ∅, called an attribute space
and any x : S → X, the tuple (S,X, x) is called unlabeled data.

For any y : S → {0, 1}, given in addition and called a labeling , the tuple (S,X, x, y) is called
labeled data.

Definition 2 For any labeled data T = (S,X, x, y), any Θ 6= ∅ and family of functions f : Θ→ RX ,
any R : Θ → R+

0 , called a regularizer , any L : R × {0, 1} → R+
0 , called a loss function, and any

λ ∈ R+
0 , called a regularization parameter , we define the following optimization problems:

• The instance of the supervised learning problem w.r.t. T,Θ, f, R, L and λ is defined as

inf
θ∈Θ

λR(θ) +
1

|S|
∑
s∈S

L(fθ(xs), ys) (2.2)

• The instance of the exact supervised learning problem w.r.t. T,Θ, f and R is defined as

inf
θ∈Θ

R(θ) (2.3)

subject to ∀s ∈ S : fθ(xs) = ys (2.4)

7



8 CHAPTER 2. SUPERVISED LEARNING

• The instance of the bounded regularity problem w.r.t. T,Θ, f, R and m is to decide whether
there exists a θ ∈ Θ such that

R(θ) ≤ m (2.5)

∀s ∈ S : fθ(xs) = ys (2.6)

Definition 3 For any unlabeled data T = (S,X, x), any f̂ : X → R and any L : R× {0, 1} → R+
0 ,

the instance of the inference problem w.r.t. T, f and L is defined as

min
y′∈{0,1}S

∑
s∈S

L(f̂(xs), y
′
s) (2.7)

Lemma 1 The solutions to the inference problem are the y : S → {0, 1} such that

∀s ∈ S : ys ∈ argmin
ŷ∈{0,1}

L(f̂(xs), ŷ) . (2.8)

Moreover, if

f̂(X) ⊆ {0, 1} (2.9)

and

∀r ∈ R ∀ŷ ∈ {0, 1} : L(r, ŷ) =

{
0 if r = ŷ

1 otherwise
(2.10)

then

∀s ∈ S : y′s = f̂(xs) . (2.11)

Proof Generally, we have

min
y∈{0,1}S

∑
s∈S

L(f̂(xs), ys) =
∑
s∈S

min
ys∈{0,1}

L(f̂(xs), ys) (2.12)

By (2.9), L(f̂(xs), f̂(xs)) is well-defined for any s ∈ S. By (2.10) and non-negativity of L, we
have

∀ys ∈ {0, 1} : L(f̂(xs), f̂(xs)) = 0 ≤ L(f̂(xs), ys) . (2.13)

Thus, ys = f̂(xs) is optimal for any s ∈ S.

We note that the exact supervised learning problem formalizes a philosophical principle known
as Ockham’s razor.



Chapter 3

Deciding

3.1 Disjunctive normal forms

3.1.1 Data

Throughout Section 3.1, we consider binary attributes. More specifically, we consider some finite
set V 6= ∅ and labeled data T = (S,X, x, y) such that X = {0, 1}V . Hence, x : S → {0, 1}V and
y : S → {0, 1}.

3.1.2 Familiy of functions

Throughout Section 3.1, we identify Θ with a set of disjunctive normal forms. More specifically,
we consider Γ = {(V0, V1) ∈ 2V × 2V | V0 ∩ V1 = ∅} and Θ = 2Γ and the following definition.

Definition 4 For any θ ∈ Θ and the fθ : {0, 1}V → {0, 1} such that

∀x ∈ {0, 1}V : fθ(x) =
∨

(V0,V1)∈θ

∏
v∈V0

(1− xv)
∏
v∈V1

xv , (3.1)

the form on the r.h.s. of (3.1) is called the disjunctive normal form (DNF) defined by V and θ.
The function fθ is said to be defined by the DNF. If there exists a k ∈ N such that ∀(V0, V1) ∈
θ : |V0 ∪ V1| ≤ k, the DNF is also called a k-DNF .

For θ ∈ Θ and the gθ : {0, 1}V → {0, 1} such that

∀x ∈ {0, 1}V : gθ(x) =
∏

(V0,V1)∈θ

( ∨
v∈V0

(1− xv) ∨
∨
v∈V1

xv

)
(3.2)

the form on the r.h.s. of (3.2) is called the conjunctive normal form (CNF) defined by V and θ.
The function gθ is said to be defined by this CNF. If there exists a k ∈ N such that ∀(V0, V1) ∈
θ : |V0 ∪ V1| ≤ k, the CNF is also called a k-CNF .

3.1.3 Regularization

Definition 5 The functions Rd, Rl : Θ → N0 whose values are defined below for any θ ∈ Θ are
called the depth and length, resp., of the forms defined by θ.

Rd(θ) = max
(V0,V1)∈θ

(|V0|+ |V1|) (3.3)

Rl(θ) =
∑

(V0,V1)∈θ

(|V0|+ |V1|) (3.4)

9



10 CHAPTER 3. DECIDING

3.1.4 Loss function

We consider the loss function L such that

∀r ∈ R ∀ŷ ∈ {0, 1} : L(r, ŷ) =

{
0 r = ŷ

1 otherwise
. (3.5)

3.1.5 Learning problem

Definition 6 For any R ∈ {Rl, Rd} and any λ ∈ [0, 1), the instance of the supervised learning
problem of DNFs with respect to T, L,R and λ has the form

min
θ∈Θ

λR(θ) +
1− λ
|S|

∑
s∈S

L(fθ(xs), ys) (3.6)

In order to examine its computational complexity, we consider the related decision problems:

Definition 7 Let m ∈ N. The instance of the bounded depth DNF problem (depth-m-dnf)
w.r.t. T and m is to decide whether there exists a θ ∈ Θ such that

Rd(θ) ≤ m (3.7)

∀s ∈ S : fθ(xs) = ys . (3.8)

The instance of the bounded length DNF problem ( length-m-dnf) w.r.t. T and m is to decide
whether there exists a θ ∈ Θ such that

Rl(θ) ≤ m (3.9)

∀s ∈ S : fθ(xs) = ys . (3.10)

We relate these problems to set-cover.

Definition 8 (Haussler (1988)) For any instance (S′,Σ,m) of set-cover, the Haussler data
T = (S,X, x, y) induced by (S′,Σ,m) is the labeled data such that

• S = S′ ∪· {1}
• X = {0, 1}Σ

• x1 = 1Σ and

∀s ∈ S′ ∀σ ∈ Σ: xs(σ) =

{
0 if s ∈ σ
1 otherwise

(3.11)

• y1 = 1 and ∀s ∈ S′ : ys = 0

Lemma 2 (Haussler (1988)) For any instance (S′,Σ,m) of set-cover, the Haussler data
T = (S,X, x, y) induced by (S′,Σ,m), and any Σ′ ∈

(
Σ
m

)
:⋃

σ∈Σ′

σ = S′ ⇔ ∀s ∈ S′ :
∏
σ∈Σ′

xs(σ) = 0

Proof ⋃
σ∈Σ′

σ = S′

⇔ ∀s ∈ S′ ∃σ ∈ Σ′ : s ∈ σ (3.12)

⇔ ∀s ∈ S′ ∃σ ∈ Σ′ : xs(σ) = 0 (3.13)

⇔ ∀s ∈ S′ :
∏
σ∈Σ′

xs(σ) = 0 (3.14)
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Theorem 1 a) set-cover ≤ depth-m-dnf
b) set-cover ≤ length-m-dnf

Proof The proof is for any R ∈ {Rd, Rl}.
Let (S′,Σ,m) any instance of set-cover.
Let T = (S,X, x, y) the Haussler data induced by (S′,Σ,m).
We show: There exists a cover Σ′ ⊆ Σ of S′ with |Σ′| ≤ m iff there exists a θ ∈ Θ such that

R(θ) ≤ m and ∀s ∈ S : fθ(xs) = ys.
(⇒) Let Σ′ ⊆ Σ a cover of S and |Σ′| ≤ m.
Let V0 = ∅ and V1 = Σ′ and θ = {(V0, V1)}. Thus,

∀x′ ∈ X : fθ(x
′) =

∏
σ∈Σ′

x′(σ) (3.15)

On the one hand, f(S′) = 0, by Lemma 2, and f(1Σ) = 1, by definition of fθ. Thus,
∀s ∈ S : f(xs) = ys.

On the other hand, R(θ) = m.
(⇐) Let θ ∈ Θ such that R(θ) ≤ m and ∀s ∈ S : fθ(xs) = ys.
There exists a (Σ0,Σ1) ∈ θ such that Σ0 = ∅, because 1 = y1 = fθ(x1) = fθ(1

Σ).
Moreover

∀s ∈ S′ : f(xs) = 0

⇒ ∀s ∈ S′ :
∨

(V0,V1)∈θ

∏
v∈V0

(1− xs(v))
∏
v∈V1

xs(v) = 0 (3.16)

⇒ ∀s ∈ S′ ∀(V0, V1) ∈ θ :
∏
v∈V0

(1− xs(v))
∏
v∈V1

xs(v) = 0 (3.17)

Thus, for (∅,Σ1) ∈ θ in particular:

∀s ∈ S′ :
∏
σ∈Σ1

xs(σ) = 0 (3.18)

And by virtue of Lemma 2: ⋃
σ∈Σ1

σ = S′ (3.19)

Furthermore, |Σ1| ≤ R(θ) = m.

3.1.6 Inference problem

For any θ ∈ Θ, the inference problem w.r.t. fθ, L and any suitable S′, X ′, x′ is solved by computing
fθ(x

′
s) for any s ∈ S′, by Lemma 1.

3.1.7 Inference algorithm

Computing fθ(x
′
s) requires evaluating the form (3.1). The number of operations is bounded by

Rl(θ) = O(|θ|Rd(θ)) = O(|θ||V |).

3.2 Binary decision trees

3.2.1 Data

Throughout Section 3.2, we again consider some finite set V 6= ∅ and labeled data T = (S,X, x, y)
such that X = {0, 1}V . Hence, x : S → {0, 1}V and y : S → {0, 1}.
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3.2.2 Familiy of functions

Definition 9 A tuple (V, Y,D,D′, d∗, E, δ, v, y) is called a V -variate Y -valued binary decision tree
(BDT) iff the following conditions hold:

• V is finite and non-empty, called the set of variables

• Y is finite, called the set of values

• (D ∪D′, E) is a finite, non-empty, directed binary tree

• d∗ ∈ D ∪D′ is the unique root of this tree

• δ : E → {0, 1}

• Every d ∈ D′ is a leaf and every d ∈ D has precisely two out-edges e = (d, d′), e′ = (d, d′′)
such that δ(e) = 0 and δ(e) = 1

• v : D → V assigning to each interior node a variable

• y : D′ → Y assigning to each leaf a value

For any BDT (V, Y,D,D′, d∗, E, δ, v, y), any d ∈ D and any j ∈ {0, 1}, let d↓j ∈ D ∪D′ the
unique node such that e = (d, d↓j) ∈ E and δ(e) = j.

Throughout Section 3.2, we consider Y = {0, 1}.

Definition 10 For any BDT θ = (V, Y,D,D′, d∗, E, δ, v, y) and any d ∈ D ∪ D′, the tuple
θ[d] = (V, Y,D2, D

′
2, d, E

′, δ′, v′, y′) with (D2 ∪D′2, E′) the subtree of (D ∪D′, E) rooted at d and
with δ′, v′ and y′ the restrictions of δ, v and y to the subsets D2, D′2 and E′ is called the binary
decision subtree of θ rooted at d.

Lemma 3 For any BDT θ = (V, Y,D,D′, d∗, E, δ, v, y) and any d ∈ D ∪D′, the binary decision
subtree θ[d] is itself a V -variate Y -valued BDT.

Definition 11 For any BDT θ = (V, Y,D,D′, d∗, E, δ, v, y), the function defined by θ is the
fθ : {0, 1}V → Y such that ∀x ∈ {0, 1}V :

fθ(x) =

{
y(d∗) if D = ∅
(1− xv(d∗))fθ[d∗↓0](x) + xv(d∗)fθ[d∗↓1](x) otherwise

. (3.20)

3.2.3 Regularization

Definition 12 For any BDT θ = (V, Y,D,D′, d∗, E, δ, v, y), the depth of θ is the natural number
R(θ) ∈ N such that

R(θ) =

{
0 if D = ∅
1 + max{R(θ[d∗↓0]), R(θ[d∗↓1])} otherwise

. (3.21)

3.2.4 Loss function

We consider the loss function L such that

∀r ∈ R ∀ŷ ∈ {0, 1} : L(r, ŷ) =

{
0 r = ŷ

1 otherwise
. (3.22)
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3.2.5 Learning problem

Definition 13 For any m ∈ N, the bounded depth BDT problem (depth-m-bdt) w.r.t. T and m
is to decide whether there exists a BDT θ = (V, Y,D,D′, d∗, E, δ, v, y′) such that

R(θ) ≤ m (3.23)

∀s ∈ S : fθ(xs) = ys . (3.24)

Theorem 2 ec-3 ≤p depth-m-bdt

Proof For any instance (S′,Σ) of ec-3 and the n ∈ N such that |S′| = 3n, we construct the
instance of depth-m-bdt such that

• V = Σ

• S = S′ ∪· {0}

• x : S → {0, 1}Σ such that x0 = 0 and

∀s ∈ S′ ∀σ ∈ Σ: xs(σ) =

{
1 if s ∈ σ
0 otherwise

(3.25)

• y : S → {0, 1} such that y0 = 0 and ∀s ∈ S′ : ys = 1.

• m = n

Next, we show that the instance ec-3 has a solution iff the instance of depth-m-bdt has a
solution.

(⇒) Let Σ′ ⊆ Σ a solution to the instance of ec-3.

Consider any order on Σ′ and the bijection σ′ : [n]→ Σ′ induced by this order. We show that
the BDT θ depicted below solves the instance of depth-m-bdt.

σ′0

1

1

σ′1

1

1

0

· · ·

0

σ′m−1

10

10

0

The BDT satisfies (3.23) as R(θ) = m.

The BDT satisfies (3.24) because (i) fθ(x0) = 0 = y0 and (ii) at each of the m interior nodes,
three additional elements of S′ are mapped to 1. Thus, all 3m many elements s ∈ S′ are mapped
to 1. That is ∀s ∈ S′ : fθ(xs) = 1 = ys.

(⇐) Let θ = (V, Y,D,D′, d∗, E, δ, σ, y′) a V -variate BDT that solves the instance of depth-m-
bdt.

W.l.o.g., we assume, for any interior node d ∈ D, that d↓1 is a leaf and y′(d↓1) = 1. Hence, θ is
of the form depicted below.
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σ′0

1

1

σ′1

1

1

0

· · ·

0

σ′N−1

10

10

0

Therefore,

∀x ∈ X : fθ(x) =

{
1 if ∃j ∈ [N ] : x(σj) = 1

0 otherwise
, (3.26)

and thus,

∀s ∈ S : fθ(xs) =

{
1 if ∃j ∈ [N ] : s ∈ σj
0 otherwise

, (3.27)

by definition of x in (3.25). Consequently,

σ(D) =

N−1⋃
j=0

σj = S′ , (3.28)

by definition of y such that y(S′) = 1.
Moreover,

3m = |S′| (3.28)
=

∣∣∣∣∣∣
N−1⋃
j=0

σj

∣∣∣∣∣∣ ≤
N−1∑
j=0

|σj | =
N−1∑
j=0

3 = 3N
(3.23)

≤ 3m .

Therefore,

∀{j, l} ∈
(

[N ]
2

)
: σk ∩ σl = ∅ , (3.29)

by Lemma 15. Hence,

σ(D) = ∪N−1
j=1 σj

is a solution to the instance of ec-3 defined by (S′,Σ), by (3.28) and (3.29).

Lemma 4 depth-m-bdt is np-complete.

Proof depth-m-bdt ∈ np, as solutions can be verified efficiently.
depth-m-bdt is np-hard, by Theorem 2 and Lemma 13.

Corollary 1 Discriminative learning of BDTs is np-hard.

3.2.6 Learning algorithm

We introduce a popular heuristic for constructing BDTs.
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Definition 14 For any finite set S, any functions y, y′ : S → Y and the set

G(y, y′) =
{
{s, t} ∈

(
S
2

) ∣∣∣ (y(s) = y(t) ∧ y′(s) 6= y′(t))

∨ (y(s) 6= y(t) ∧ y′(s) = y′(t))
}

(3.30)

the function ∆ : Y S × Y S → [0, 1] such that

∆(y, y′) =
|G(y, y′)|(|S|

2

) (3.31)

is called the impurity pseudometric of functions Y S .

Exercise 1 (i) Show that the impurity pseudometric is indeed a pseudometric.
(ii) Show that the impurity pseudometric is not necessarily a metric.

Definition 15 For any of the given labeled data T = (S,X, x, y), the greedy impurity minimizing
algorithm constructs a BDT θ = (V, Y = {0, 1}, D,D′, d∗, E, δ, v, y′) by initializing D = D′ = E =
∅ and executing the procedure grow(d∗, S).

grow(d, S′)

if ∀s, s′ ∈ S′ : ys = ys′

D′ := D′ ∪· {d} add leaf d
choose s ∈ S′
y′d := ys

else
D := D ∪· {d} add interior node d
choose v̂ ∈ min

v∈V
∆(y, xv)

for j ∈ {0, 1}
let dj /∈ D ∪D′
grow(dj , {s ∈ S′ | xs(v̂) = j}) recurse
e := (d, dj)
E := E ∪· {e}
δe := j

3.2.7 Inference problem

For any BDT θ = (V, Y,D,D′, d∗, E, δ, v, y′), the inference problem w.r.t. fθ, L and any suitable
S′, X ′, x′ is solved by computing fθ(x

′
s) for any s ∈ S′, by Lemma 1.

3.2.8 Inference algorithm

The inference problem is solved by evaluating the form (3.20). The time complexity is O (R(θ)).

3.3 Linear functions

3.3.1 Data

Throughout Section 3.3, we consider real attributes. More specifically, we consider some finite set
V 6= ∅ and labeled data T = (S,X, x, y) with X = RV . Hence, x : S → RV and y : S → {0, 1}.

3.3.2 Familiy of functions

Throughout Section 3.3, we consider linear functions. More specifically, we consider Θ = RV and
f : Θ→ RX such that

∀θ ∈ Θ ∀x̂ ∈ X : fθ(x̂) = 〈θ, x̂〉 . (3.32)
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3.3.3 Probabilistic model

Random variables

• For any s ∈ S, let Xs be a random variable whose realization is a vector xs ∈ RV , called the
attribute vector of s

• For any s ∈ S, let Ys be a random variable whose realization is a binary number ys ∈ {0, 1},
called the label of s

• For any v ∈ V , let Θv be a random variable whose realization is a real number θv ∈ R, called
a parameter

Conditional independence assumptions

We assume a probability distribution that factorizes according to the Bayesian net depicted below.

Xs

YsΘv

v ∈ V s ∈ S

Factorization

• Firstly:

P (X,Y,Θ) =
∏
s∈S

P (Ys | Xs,Θ)P (Xs)
∏
v∈V

P (Θv) (3.33)

• Secondly:

P (Θ | X,Y ) =
P (X,Y,Θ)

P (X,Y )

=
P (Y | X,Θ)P (X)P (Θ)

P (X,Y )

∝ P (Y | X,Θ)P (Θ)

=
∏
s∈S

P (Ys | Xs,Θ)
∏
v∈V

P (Θv) (3.34)

Forms

We consider:

• The logistic distribution

∀s ∈ S : pYs|Xs,Θ(1) =
1

1 + 2−fθ(xs)
(3.35)

• A σ ∈ R+ and the normal distribution:

∀v ∈ V : pΘv (θv) =
1

σ
√

2π
e−θ

2
v/2σ

2

(3.36)
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3.3.4 Learning problem

Lemma 5 (Logistic regression) Estimating maximally probable parameters θ, given attributes
x and labels y, i.e.,

argmax
θ∈Rm

pΘ|X,Y (θ, x, y)

is identical to the supervised learning problem w.r.t. L, R and λ such that

∀r ∈ R ∀ŷ ∈ {0, 1} : L(r, ŷ) = −ŷr + log (1 + 2r) (3.37)

∀θ ∈ Θ: R(θ) = ‖θ‖22 (3.38)

λ =
log e

2σ2
(3.39)

Proof Firstly,

argmax
θ∈Rm

pΘ|X,Y (θ, x, y)

(3.34)
= argmax

θ∈Rm

∏
s∈S

pYs|Xs,Θ(ys, xs, θ)
∏
v∈V

pΘv (θv)

= argmax
θ∈Rm

∑
s∈S

log pYs|Xs,Θ(ys, xs, θ) +
∑
v∈V

log pΘv (θv) (3.40)

Substituting in (3.40) the linearization

log pYs|Xs,Θ(ys, xs, θ)

= ys log pYs|Xs,Θ(1, xs, θ) + (1− ys) log pYs|Xs,Θ(0, xs, θ)

= ys log
pYs|Xs,Θ(1, xs, θ)

pYs|Xs,Θ(0, xs, θ)
+ log pYs|Xs,Θ(0, xs, θ) (3.41)

as well as (3.35) and (3.36) yields the form (3.42) below that is called the instance of the l2-
regularized logistic regression problem with respect to x, y and σ.

argmin
θ∈Rm

∑
s∈S

(
−ys〈θ, xs〉+ log

(
1 + 2〈θ,xs〉

))
+

log e

2σ2
‖θ‖22 (3.42)

Exercise 2 a) Derive (3.42) from (3.40) using (3.41), (3.35) and (3.36)

b) Is the objective function of (3.42) convex?

3.3.5 Inference problem

Lemma 6 Estimating maximally probable labels y, given attributes x′ and parameters θ, i.e.,

argmax
y∈{0,1}S

pY |X,Θ(y, x′, θ) (3.43)

is identical to the inference problem w.r.t. f and L. It has the solution

∀s ∈ S′ : ys =

{
1 if fθ(x

′
s) > 0

0 otherwise
(3.44)
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Proof Firstly,

argmax
y∈{0,1}S′

pY |X,Θ(y, x′, θ)

= argmax
y∈{0,1}S′

∏
s∈S′

pYs|Xs,Θ(ys, x
′
s, θ)

= argmax
y∈{0,1}S′

∑
s∈S′

log pYs|Xs,Θ(ys, x
′
s, θ)

= argmax
y∈{0,1}S′

∑
s∈S′

(
ys log

pYs|Xs,Θ(1, x′s, θ)

pYs|Xs,Θ(0, x′s, θ)
+ log pYs|Xs,Θ(0, x′s, θ)

)
= argmin
y∈{0,1}S′

∑
s∈S′

(
−ysfθ(x′s) + log

(
1 + 2fθ(x′s)

))
= argmin
y∈{0,1}S′

∑
s∈S′

L(fθ(x
′
s), ys) .

Secondly,

min
y∈{0,1}S′

∑
s∈S′

(
−ysfθ(x′s) + log

(
1 + 2fθ(x′s)

))
=
∑
s∈S′

max
ys∈{0,1}

ysfθ(x
′
s) .

3.3.6 Inference algorithm

The inference problem is solved by computing independently for each s ∈ S′ the label

ys =

{
1 if 〈θ, x′s〉 > 0

0 otherwise
. (3.45)

The time complexity is O(|V ||S′|).



Chapter 4

Semi-supervised and unsupervised
learning

4.1 Intuition

So far, we have considered learning problems w.r.t. labeled data (S,X, x, y) where, for every s ∈ S,
a label ys ∈ {0, 1} is given, and inference problems w.r.t. unlabeled data (S′, X ′, x) where no label
is given and every combination of labels y′ : S → {0, 1} is a feasible solution.

Next, we consider learning problems where not every label is given and inference problems
where not every combination of labels is feasible. Unlike before, the data we look at in both
problems coincides, consisting of tuples (S,X, x,Y) where Y ⊆ {0, 1}S is a set of feasible labelings.
In particular, Y = {0, 1}S is the special case of unlabeled data, and |Y| = 1 is the special case of
labeled data. Non-trivial choices of Y allow us to express problems of learning and inferring finite
structures such as maps (Chapter 5), equivalence relations (Chapter 6) and orders (Chapter 7).

4.2 Definition

Definition 16 For any S 6= ∅ finite, called a set of samples , any X 6= ∅, called an attribute space,
any x : S → X and any ∅ 6= Y ⊆ {0, 1}S , called a set of feasible labelings , the tuple T = (S,X, x,Y)
is called constrained data.

Definition 17 For any constrained data T = (S,X, x,Y), any Θ 6= ∅ and family of functions
f : Θ→ RX , any R : Θ→ R+

0 , called a regularizer , any L : R×{0, 1} → R+
0 , called a loss function

and any λ ∈ R+
0 , called a regularization parameter , the instance of the learning and inference

problem w.r.t. T,Θ, f, R, L and λ is defined as

min
y∈Y

inf
θ∈Θ

λR(θ) +
1

|S|
∑
s∈S

L(fθ(xs), ys) (4.1)

The special case of one-elementary Y = {y} is called the supervised learning problem.

The special case of one-elementary Θ = {θ̂} written below is called the inference problem.

min
y∈Y

∑
s∈S

L(fθ(xs), ys) (4.2)

The mixed integer optimization problem (4.1) is an topic of machine learning research beyond
the scope of this lecture. Special cases of the binary optimization problem (4.2) have been studied
intensively and are discussed in the following chapters.

19
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Chapter 5

Classifying

5.1 Maps

For any finite set A 6= ∅ whose elements we seek to classify and any finite set B 6= ∅ of class labels,
we are interested in maps ϕ : A→ B that assign to every element a ∈ A precisely one class label
ϕ(a) ∈ B. Maps are precisely those subsets of ϕ ⊆ A×B that satisfy

∀a ∈ A ∃b ∈ B : (a, b) ∈ ϕ (5.1)

∀a ∈ A ∀b, b′ ∈ B : (a, b) ∈ ϕ ∧ (a, b′) ∈ ϕ⇒ b = b′ . (5.2)

They are characterized by those functions y : A×B → {0, 1} that satisfy

∀a ∈ A :
∑
b∈B

yab = 1 . (5.3)

We reduce the problem of learning and inferring maps to the problem of learning and inferring
decisions, by choosing constrained data with

S = A×B (5.4)

Y =

{
y : A×B → {0, 1}

∣∣∣∣∣ ∀a ∈ A :
∑
b∈B

yab = 1

}
. (5.5)

5.2 Linear functions

5.2.1 Data

Throughout Section 5.2, we consider some finite set V 6= ∅ and constrained data (S,X, x,Y) with
S = A×B as in (5.4), X = B × RV , and Y as in (5.5). More specifically, we assume that, for any
(a, b) ∈ A×B, the class label b is the first attribute of (a, b), i.e.,

∀a ∈ A ∀b ∈ B ∃x̂ ∈ RV : xab = (b, x̂) (5.6)

As a special case, we consider labeled data where we are given just one Y = {y} with y satisfying
the constraints (5.3).

5.2.2 Familiy of functions

Throughout Section 5.2, we consider linear functions. More specifically, we consider Θ = RB×V
and f : Θ→ RX such that

∀θ ∈ Θ ∀b ∈ B ∀x̂ ∈ RV : fθ((b, x̂)) =
∑
v∈V

θbv x̂v = 〈θb·, x̂〉 . (5.7)

21
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5.2.3 Probabilistic model

Random variables

• For any (a, b) ∈ A×B, let Xab be a random variable whose realization is a vector xab ∈ B×RV ,
called the attribute vector of (a, b).

• For any (a, b) ∈ A×B, let Yab be a random variable whose realization is a binary number
yab ∈ {0, 1}, called the decision of classifying a as b

• For any b ∈ B and any v ∈ V , let Θbv be a random variable whose realization is a real
number θbv ∈ R, called a parameter

• Let Z be a random variable whose realization is a subset z ⊆ {0, 1}A×B . For multiple label
classification, we are interested in z = Y, the set of the characteristic functions of all maps
from A to B.

Conditional independence assumptions

We assume a probability distribution that factorizes according to Bayesian net depicted below.

Xab

Yab

Z

Θbv

v ∈ V a ∈ A

b ∈ B

Factorization

These conditional independence assumptions imply the following factorizations:

• Firstly:

P (X,Y, Z,Θ) = P (Z | Y )
∏

(a,b)∈A×B

P (Yab | Xab,Θ)
∏

(b,v)∈B×V

P (Θbv)
∏

(a,b)∈A×B

P (Xab)

(5.8)

• Secondly:

P (Θ | X,Y, Z) =
P (X,Y, Z,Θ)

P (X,Y, Z)

=
P (Z | Y )P (Y | X,Θ)P (X)P (Θ)

P (Z | X,Y )P (X,Y )

=
P (Z | Y )P (Y | X,Θ)P (X)P (Θ)

P (Z | Y )P (X,Y )

=
P (Y | X,Θ)P (X)P (Θ)

P (X,Y )

∝ P (Y | X,Θ)P (Θ)

=
∏

(a,b)∈A×B

P (Yab | Xab,Θ)
∏

(b,v)∈B×V

P (Θbv) (5.9)
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• Thirdly,

P (Y | X,Z, θ) =
P (X,Y, Z,Θ)

P (X,Z,Θ)

=
P (Z | Y )P (Y | X,Θ)P (X)P (Θ)

P (X,Z,Θ)

∝ P (Z | Y )P (Y | X,Θ)

= P (Z | Y )
∏

(a,b)∈A×B

P (Yab | Xab,Θ) (5.10)

Forms

Here, we consider:

• The logistic distribution

∀(a, b) ∈ A×B : pYab|Xab,Θ(1) =
1

1 + 2−fθ(xab)
(5.11)

• A σ ∈ R+ and the normal distribution:

∀(b, v) ∈ B × V : pΘbv (θbv) =
1

σ
√

2π
e−θ

2
bv/2σ

2

(5.12)

• A uniform distribution on a subset:

∀z ⊆ {0, 1}A×B : pZ|Y (z) ∝

{
1 if y ∈ z
0 otherwise

(5.13)

Note that pZ|Y (Y) is non-zero iff the relation y−1(1) ⊆ A×B is a map.

5.2.4 Learning problem

Lemma 7 Estimating maximally probable parameters θ, given attributes x and decisions y, i.e.,

argmax
θ∈RB×V

pΘ|X,Y (θ, x, y)

is identical to the supervised learning problem w.r.t. L, R and λ such that

∀r ∈ R ∀ŷ ∈ {0, 1} : L(r, ŷ) = −ŷr + log (1 + 2r) (5.14)

∀θ ∈ Θ: R(θ) = ‖θ‖22 (5.15)

λ =
log e

2σ2
(5.16)

Moreover, this problem separates into |B| independent supervised learning problems, each
w.r.t. parameters in RV , with L and λ as above, and with

∀θ′ ∈ RV : R′(θ′) = ‖θ′‖22 (5.17)

Proof Analogous to the case of binary classification from Section 3.3, we now obtain:

argmax
θ∈RB×V

pΘ|X,Y (θ, x, y)

= argmin
θ∈RB×V

∑
(a,b)∈A×B

(
−yabfθ(xab) + log

(
1 + 2fθ(xab)

))
+

log e

2σ2
‖θ‖22 . (5.18)
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Consider the unique x′ : A×B → RV such that, for any (a, b) ∈ A×B, we have xab = (b, x′ab).
Problem (5.18) separates into |B| many l2-regularized logistic regression problems, one for each

b ∈ B, because

min
θ∈RB×V

∑
(a,b)∈A×B

(
−yab〈θb·, x′ab〉+ log

(
1 + 2〈θb·,x

′
ab〉
))

+
log e

2σ2
‖θ‖22

= min
θ∈RB×V

∑
b∈B

(∑
a∈A

(
−yab〈θb·, x′ab〉+ log

(
1 + 2〈θb·,x

′
ab〉
))

+
log e

2σ2
‖θb·‖22

)

=
∑
b∈B

min
θb·∈RV

(∑
a∈A

(
−yab〈θb·, x′ab〉+ log

(
1 + 2〈θb·,x

′
ab〉
))

+
log e

2σ2
‖θb·‖22

)
.

5.2.5 Inference problem

Lemma 8 For any constrained data as defined above, any θ ∈ RB×V and any ŷ : A×B → {0, 1},
ŷ is a solution to the inference problem

min
y∈Y

∑
(a,b)∈A×B

L(fθ(xab), yab) (5.19)

iff there exists an ϕ : A→ B such that

∀a ∈ A : ϕ(a) ∈ max
b∈B
〈θb·, x′ab〉 (5.20)

and

∀(a, b) ∈ A×B : ŷab = 1⇔ ϕ(a) = b . (5.21)

Proof ∑
(a,b)∈A×B

L(fθ(xab), yab)

=
∑

(a,b)∈A×B

(L(fθ(xab), 1) yab + L(fθ(xab), 0) (1− yab))

=
∑

(a,b)∈A×B

(L(fθ(xab), 1)− L(fθ(xab), 0)) yab + const.

=
∑

(a,b)∈A×B

(−fθ(xab)) yab by (5.14)

=
∑

(a,b)∈A×B

(−〈θb·, x′ab〉) yab xab = (b, x′ab)

=
∑
a∈A

∑
b∈B

(−〈θb·, x′ab〉) yab

5.2.6 Inference algorithm

The inference problem is solved by solving (5.20) independently for each a ∈ A. The time complexity
is O(|A||B||V |).



Chapter 6

Clustering

6.1 Partitions and equivalence relations

Throughout this chapter, we consider some finite set A 6= ∅ that we seek to partition into subsets.
Hence, our feasible solutions are the partitions of A. A partition Π of A is a collection Π ⊆ 2A of
non-empty and pairwise disjoint subsets of A whose union is A.

The partitions of A are characterized by the equivalence relations on A. An equivalence relation
≡ on A is a binary relation ≡ ⊆ A×A that is reflexive, symmetric and transitive. For any partition
Π of A, the equivalence relation ≡Π induced by Π is such that

∀a, a′ ∈ A : a ≡Π a′ ⇔ ∃U ∈ Π: a ∈ U ∧ a′ ∈ U . (6.1)

In turn, the equivalence relations on A are characterized by those y :
(
A
2

)
→ {0, 1} that satisfy

∀{a, b, c} ∈
(
A
3

)
: y{a,b} + y{b,c} − 1 ≤ y{a,c} . (6.2)

For any partition Π of A, consider the yΠ :
(
A
2

)
→ {0, 1} such that

∀{a, a′} ∈
(
A
2

)
: yΠ

{a,a′} = 1 ⇔ ∃U ∈ Π: a ∈ U ∧ a′ ∈ U . (6.3)

Herein, for any {a, b} ∈
(
A
2

)
, the decision y{a,b} = 1 means that a and b are in the same cluster,

whereas the decision y{a,b} = 0 means that a and b in distinct clusters.
We reduce the problem of learning and inferring partitions to the problem of learning and

inferring decisions by choosing constrained data with

S =
(
A
2

)
(6.4)

Y =
{
y :
(
A
2

)
→ {0, 1}

∣∣∣ (6.2)
}

. (6.5)

One can think of the set S as the set of edges in the complete graph with nodes A and without
self-edges.

6.2 Correlation clustering

6.2.1 Data

Throughout Section 6.2, we consider some finite set V 6= ∅ and constrained data (S,X, x,Y) with
S =

(
A
2

)
as in (6.4), X = RV and Y as in (6.5). As a special case, we consider labeled data, i.e.,

just one Y = {y} with y satisfying the constraints (6.2).
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6.2.2 Familiy of functions

Throughout Section 5.2, we consider linear functions. More specifically, we consider Θ = RV and
f : Θ→ RX such that

∀θ ∈ Θ ∀x̂ ∈ RV : fθ(x̂) = 〈θ, x̂〉 . (6.6)

6.2.3 Probabilistic model

Random variables

• For any {a, a′} ∈ S, let X{a,a′} be a random variable whose realization is a vector x{a,a′} ∈ RV ,
called the attribute vector of the pair {a, a′}.

• For any {a, a′} ∈ S, let Y{a,a′} be a random variable whose realization is a binary number
y{a,a′} ∈ {0, 1}, called the decision of joining a and a′ in the same cluster.

• For any v ∈ V , let Θv be a random variable whose realization is a real number θv ∈ R, called
a parameter

• Let Z be a random variable whose realization is a subset z ⊆ {0, 1}S . For clustering, we are
interested in z = Y, a characterization of all partitions of A.

Conditional independence assumptions

We assume a probability distribution that factorizes according to the Bayesian net depicted below.

Xs

Ys

Z

Θv

v ∈ V s ∈ S

Factorization

These conditional independence assumptions imply the following factorizations:

• Firstly:

P (X,Y, Z,Θ) = P (Z | Y )
∏
s∈S

P (Ys | Xs,Θ)
∏
s∈S

P (Xs)
∏
v∈V

P (Θv) (6.7)

• Secondly:

P (Θ | X,Y, Z) =
P (X,Y, Z,Θ)

P (X,Y, Z)

=
P (Z | Y )P (Y | X,Θ)P (X)P (Θ)

P (Z | X,Y )P (X,Y )

=
P (Z | Y )P (Y | X,Θ)P (X)P (Θ)

P (Z | Y )P (X,Y )

=
P (Y | X,Θ)P (X)P (Θ)

P (X,Y )

∝ P (Y | X,Θ)P (Θ)

=
∏
s∈S

P (Ys | Xs,Θ)
∏
v∈V

P (Θv) (6.8)
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• Thirdly,

P (Y | X,Z, θ) =
P (X,Y, Z,Θ)

P (X,Z,Θ)

=
P (Z | Y )P (Y | X,Θ)P (X)P (Θ)

P (X,Z,Θ)

∝ P (Z | Y )P (Y | X,Θ)

= P (Z | Y )
∏
s∈S

P (Ys | Xs,Θ) (6.9)

Forms

Here, we consider:

• The logistic distribution

∀s ∈ S : pYs|Xs,Θ(1) =
1

1 + 2−fθ(xs)
(6.10)

• A σ ∈ R+ and the normal distribution:

∀v ∈ V : pΘv (θv) =
1

σ
√

2π
e−θ

2
v/2σ

2

(6.11)

• A uniform distribution on a subset:

∀z ⊆ {0, 1}S : pZ|Y (z) ∝

{
1 if y ∈ z
0 otherwise

(6.12)

Note that pZ|Y (Y) is non-zero iff y induces an equivalence relations and hence a partition of
A.

6.2.4 Learning problem

Corollary 2 Estimating maximally probable parameters θ, given attributes x and labels y, i.e.,

argmax
θ∈Rm

pΘ|X,Y (θ, x, y)

is identical to the supervised learning problem w.r.t. L, R and λ such that

∀r ∈ R ∀ŷ ∈ {0, 1} : L(r, ŷ) = −ŷr + log (1 + 2r) (6.13)

∀θ ∈ Θ: R(θ) = ‖θ‖22 (6.14)

λ =
log e

2σ2
(6.15)

6.2.5 Inference problem

Corollary 3 For any constrained data as defined above and any θ ∈ RV , the inference problem
takes the form of correlation-clustering

min
y:(A2)→{0,1}

∑
{a,a′}∈S

(−〈θ, x{a,a′}〉) y{a,a′} (6.16)

subject to ∀{a, b, c} ∈
(
A
3

)
: y{a,b} + y{b,c} − 1 ≤ y{a,c} . (6.17)

correlation-clustering has been studied intensively, notably by Bansal et al. (2004) and
Demaine et al. (2006).

Lemma 9 (Bansal et al. (2004)) correlation-clustering is np-hard.

Bansal et al. (2004) establish np-hardness of correlation-clustering by a reduction of
k-terminal-cut whose np-hardness is an important result of Dahlhaus et al. (1994).
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6.2.6 Inference algorithm

Below, we discuss three local search algorithms for the correlation clustering problem, i.e., heuristics
whose outputs need not be optimal.

For simplicity, we define c : S → R such that

∀{a, a′} ∈ S : c{aa′} = −〈θ, x{a,a′}〉 , (6.18)

and write the objective function ϕ : {0, 1}S → R such that

∀y ∈ {0, 1}S : ϕ(y) =
∑

{a,a′}∈S

c{a,a′} y{a,a′} (6.19)

Greedy joining

The greedy joining algorithm starts from any initial partition and searches for partitions with lower
objective value by joining pairs of clusters recursively. As clusters can only grow and the number
of clusters decreases by precisely one in every step, one typically starts from the partition Π0 of A
into one-elementary subsets.

Definition 18 For any partition Π of A, and any B,C ∈ Π, let joinBC [Π] the partition of A
obtained by joining the sets B and C in Π, i.e.

joinBC [Π] = (Π \ {B,C}) ∪ {B ∪ C} . (6.20)

Algorithm 1 The greedy joining algorithm is defined by the recursion below.

Π′ = greedy-joining(Π)

choose {B,C} ∈ argmin
{B′,C′}∈(Π

2)
ϕ(yjoinB′C′ [Π])− ϕ(yΠ)

if ϕ(yjoinBC [Π])− ϕ(yΠ) < 0
Π′ := greedy-joining(joinBC [Π])

else
Π′ := Π

Exercise 3 a) Write the difference ϕ(yjoinB′C′ [Π])− ϕ(yΠ) in terms of the c defined in (6.18).

b) Implement greedy joining efficiently.

c) Establish a bound on the time complexity of your implementation.

Greedy moving

The greedy moving algorithm starts from any initial partition, e.g., the fixed point of greedy joining,
and seeks to lower the objective function by recursively moving individual elements from one cluster
to another, or to new clusters. When an element is moved to a new cluster, the number of clusters
can increase. When the last element is moved from a cluster, the number of clusters can decrease.

Definition 19 For any partition Π of A, any a ∈ A and any U ∈ Π ∪ {∅}, let moveaU [Π] the
partition of A obtained by moving the element a to a subset U ∪ {a} in Π.

moveaU [Π] = Π \ {U} \ {W ∈ Π | a ∈W} ∪ {U ∪ {a}} ∪
⋃

{W∈Π | a∈W∧{a}6=W}

{W \ {a}} . (6.21)

Algorithm 2 The greedy moving algorithm is defined by the recursion below.
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Π′ = greedy-moving(Π)

choose (a, U) ∈ argmin
(a′,U ′)∈A×(Π∪{∅})

ϕ(ymovea′U′ [Π])− ϕ(yΠ)

if ϕ(ymoveaU [Π])− ϕ(yΠ) < 0
Π′ := greedy-moving(moveaU [Π])

else
Π′ := Π

Exercise 4 a) Write the difference ϕ(ymoveaU [Πt])− ϕ(yΠt) in terms of the c defined in (6.18).
b) Implement greedy moving.

Greedy moving using the technique of Kernighan and Lin (1970)

Both algorithms discussed above terminate as soon as no transformation (join and move, resp.) leads
to a partition with strictly lower objective value. This can be suboptimal in case transformations
that increase the objective value at one point in the recursion can lead to transformations that
decrease the objective value at later points in the recursion and the decrease overcompensates the
increase. One technique introduced by Kernighan and Lin (1970) for generalizing greedy algorithms
with the goal of escaping such sub-optimal fixed points is applied below to greedy moving.

Algorithm 3 The greedy moving algorithm generalized by the technique of Kernighan and Lin
(1970) is defined by the recursion below.

Π′ = greedy-moving-kl(Π)

Π0 := Π
δ0 := 0
A0 := A
t := 0
repeat (build sequence of moves)

choose (at, Ut) ∈ argmin
(a,U)∈At×(Π∪{∅})

ϕ(ymoveaU [Πt])− ϕ(yΠt)

Πt+1 := moveatUt [Πt]
δt+1 := ϕ(yΠt+1)− ϕ(yΠt) < 0
At+1 := At \ {at} (move at only once)
t := t+ 1

until At = ∅

t̂ := min argmin
t′∈{0,...,|A|}

t′∑
τ=0

δτ (choose sub-sequence)

if
t̂∑

τ=0
δτ < 0

Π′ := greedy-moving-kl(Πt̂) (recurse)
else

Π′ := Π (terminate)

Exercise 5 a) Implement greedy moving using the technique of Kernighan and Lin (1970).
b) Generalize the greedy joining algorithm using the technique of Kernighan and Lin (1970).
c) Implement greedy joining using the technique of Kernighan and Lin (1970).
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Chapter 7

Ordering

7.1 Orders

Throughout this chapter, we consider some finite set A 6= ∅ that we seek to order. Hence, our
feasible solutions are strict (total) orders on A. A strict order on A is a binary relation < ⊆ A×A
that is trichotomous and transitive, i.e., it satisfies the following conditions:

∀a ∈ A : ¬a < a (7.1)

∀{a, b} ∈
(
A
2

)
: a < b xor b < a (7.2)

∀{a, b, c} ∈
(
A
3

)
: a < b ∧ b < c ⇒ a < c (7.3)

On the one hand, the strict orders on A are characterized by the bijections α : {0, . . . , |A|−1} →
A. For any such bijection, consider the order <α such that

∀a, b ∈ A : a < b ⇔ α−1(a) < α−1(b) . (7.4)

On the other hand, the strict orders on A are characterized by those

y : {(a, b) ∈ A×A | a 6= b} → {0, 1} (7.5)

that satisfy the following conditions:

∀{a, b} ∈
(
A
2

)
: yab + yba = 1 (7.6)

∀{a, b, c} ∈
(
A
3

)
: yab + ybc − 1 ≤ yac (7.7)

We reduce the problem of learning and inferring orders to the problem of learning and inferring
decisions, by choosing constrained data with

S = {(a, b) ∈ A×A | a 6= b} (7.8)

Y =
{
y ∈ {0, 1}S

∣∣ (7.6) ∧ (7.7)
}
. (7.9)

One can think of the set S as the set of edges in the complete digraph with nodes A and without
self-edges.

7.2 Linear ordering

7.2.1 Data

Throughout Section 7.2, we consider some finite set A 6= ∅ and constrained data (S,X, x,Y) with
S = {(a, b) ∈ A×A | a 6= b} as in (7.8), X = RV and Y as in (7.9). As a special case, we consider
labeled data, i.e., just one Y = {y} with y satisfying the constraints (7.6) and (7.7).
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7.2.2 Learning

The learning of linear orders is analogous to the learning of equivalence relations (Chapter 6).

7.2.3 Inference problem

Corollary 4 For any constrained data as defined above and any θ ∈ RV , the inference problem
takes the form of linear-ordering, i.e.

min
y∈{0,1}S

∑
(a,b)∈S

(−〈θ, xab〉) yab (7.10)

subject to ∀{a, b} ∈
(
A
2

)
: yab + yba = 1 (7.11)

∀{a, b, c} ∈
(
A
3

)
: yab + ybc − 1 ≤ yac . (7.12)

linear-ordering has been studied intensively. A comprehensive survey is by Mart́ı and
Reinelt (2011). Important early research is by Grötschel et al. (1984).

Lemma 10 linear-ordering is np-hard.

7.2.4 Inference algorithms

Below, we discuss two local search algorithms for the linear ordering problem, i.e., heuristics whose
outputs need not be optimal.

For simplicity, we define c : S → R such that

∀(a, b) ∈ S : cab = −〈θ, xab〉 , (7.13)

and write the objective function ϕ : {0, 1}S → R such that

∀y ∈ {0, 1}S : ϕ(y) =
∑

(a,b)∈S

cab yab (7.14)

Greedy transposition

The greedy transposition algorithm starts from an initial strict order and searches for strict orders
with lower objective value by swapping pairs of elements.

Definition 20 For any bijection α : [|A|]→ A and any j, k ∈ [|A|], let transposejk[α] the bijection
obtained from α by swapping αj and αk, i.e.

∀l ∈ [|A|] : transposejk[α](l) =


αk if l = j

αj if l = k

αl otherwise

. (7.15)

Algorithm 4 The greedy transposition algorithm is defined by the recursion below.

α′ = greedy-transposition(α)

choose (j, k) ∈ argmin
0≤j′<k′≤|A|

ϕ(ytransposej′k′ [α])− ϕ(yα)

if ϕ(ytransposejk[α])− ϕ(yα) < 0
α′ := greedy-transposition(transposejk[α])

else
α′ := α

Exercise 6 a) Write the difference ϕ(ytransposej′k′ [α])− ϕ(yα) in terms of the c defined in (7.13).
b) Implement greedy transposition.
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Greedy transposition using the technique of Kernighan and Lin (1970)

As in the case of greedy heuristics for the correlation clustering problem, the greedy transposition
algorithm for the linear ordering problem has been generalized using the idea of Kernighan and
Lin (1970).

Algorithm 5 (Mart́ı and Reinelt (2011)) The greedy transposition algorithm generalized by
the technique of Kernighan and Lin (1970) is defined by the recursion below.

α′ = greedy-transposition-kl(α)

α0 := α
δ0 := 0
J0 := [|A|]
t := 0
repeat (build sequence of swaps)

choose (j, k) ∈ argmin
{(j′,k′)∈J2|j′<k′}

ϕ(ytransposej′k′ [α
t])− ϕ(yα

t

)

αt+1 := transposejk[αt]

δt+1 := ϕ(yα
t+1

)− ϕ(yα
t

) < 0
Jt+1 := Jt \ {j, k} (move αj and αk only once)
t := t+ 1

until |Jt| < 2

t̂ := min argmin
t′∈{0,...,|A|}

t′∑
τ=0

δτ (choose sub-sequence)

if
t̂∑

τ=0
δτ < 0

α′ := greedy-transposition-kl(αt̂) (recurse)
else

α′ := α (terminate)

Exercise 7 Implement greedy transposition using the technique of Kernighan and Lin (1970).
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Appendix A

Combinatorial problems

A.1 Satisfiability

Definition 21 For any CNF defined by V and θ as in Definition 4, and for the Boolean function
fθ defined by this form as in Definition 4, deciding whether there exists an x ∈ {0, 1}V such that
fθ(x) = 1 is called the instance of the satisfiability problem ( sat) with respect to V and θ.

Any instance of sat with respect to a 3-CNF defined by V and θ as in Definition 4 is additionally
called an instance of the 3-satisfiability problem (3-sat) with respect to V and θ.

Theorem 3 (Cook (1971)) sat is np-complete.

Theorem 4 (Karp (1972)) sat ≤p 3-sat.

Lemma 11 (Karp (1972)) 3-sat is np-complete.

Proof 3-sat ∈ np, as solutions can be verified efficiently.
3-sat is np-hard by Theorems 3 and 4.

A.2 Matching

Definition 22 For anym ∈ N, any finite, non-empty sets S0, . . . , Sm−1 and any T ⊆ S0×· · ·×Sm−1

the set T is called a matching of S0, . . . , Sm−1 iff, for all distinct (s0, . . . , sm−1), (s′0, . . . , s
′
m−1) ∈ T

and all j ∈ [m], we have sj 6= s′j .
The matching is called perfect iff, in addition, for every j ∈ [m] and every sj ∈ Sj , there exists

precisely one s′ ∈ T such that s′j = sj .

Lemma 12 If a perfect matching as in Definition 22 exists, we have |S0| = · · · = |Sm−1|.

Definition 23 For any m ∈ N, any finite, non-empty sets S0, . . . , Sm−1 such that |S0| = · · · =
|Sm−1| and any T ⊆ S0 × · · · × Sm−1, deciding whether there exists a perfect matching T ′ ⊆ T of
S0, . . . , Sm−1 is called the instance of the m-dimensional perfect matching problem (m-pm) with
respect to m, S0, . . . , Sm−1 and T .

Theorem 5 3-sat ≤p 3-pm

Proof Consider any instance of 3-sat defined by a 3-CNF defined by V and θ as in Definition 4.
Let n = |θ| the number of clauses of the 3-CNF.
Choose any order on θ to obtain a bijection θ′ : [n]→ θ.
Define an instance of 3-pm by three sets A,B,C of equal cardinality and one set T ⊆ A×B×C

of triples constructed as follows:
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• For any clause index c ∈ [n] and any variable v ∈ V , let

(avc , b
v
c , x̄

v
c ) ∈ T (A.1)

(avc+1 mod n, b
v
c , x

v
c ) ∈ T (A.2)

• For any clause index c ∈ [n] and the (V0, V1) = θ′c, distinguish between the variables in the
clause, that is, the set V0∪V1, and the variables not in the clause, that is, the set V \ (V0∪V1):

– For each variable v ∈ V \ (V0 ∪ V1), let

(αvc , β
v
c , x̄

v
c ) ∈ T (A.3)

(αvc , β
v
c , x

v
c ) ∈ T (A.4)

– For each variable v ∈ V0, let

(ac, bc, x̄
v
c ) ∈ T (A.5)

– For each variable v ∈ V1, let

(ac, bc, x
v
c ) ∈ T (A.6)

– If |V0 ∪ V1| ≥ 2, then, for each variable v ∈ V0 ∪ V1, let

(αc, βc, x
v
c ) ∈ T (A.7)

(αc, βc, x̄
v
c ) ∈ T (A.8)

– If |V0 ∪ V1| = 3, then, for each variable v ∈ V0 ∪ V1, let

(α′c, β
′
c, x

v
c ) ∈ T (A.9)

(α′c, β
′
c, x̄

v
c ) ∈ T (A.10)

In order to verify that |A| = |B| = |C|, we count the elements defined in the triples above:

Triples Elements |A| |B| |C|
(A.1), (A.2) avc n|V |
(A.1), (A.2) bvc n|V |
(A.1), (A.2) x̄vc n|V |
(A.1), (A.2) xvc n|V |
(A.3), (A.4) αvc

∑
(V0,V1)∈θ

(|V | − |V0| − |V1|)

(A.3), (A.4) βvc
∑

(V0,V1)∈θ
(|V | − |V0| − |V1|)

(A.5)–(A.10) ac, αc, α
′
c

∑
(V0,V1)∈θ

(|V0|+ |V1|)

(A.5)–(A.10) bc, βc, β
′
c

∑
(V0,V1)∈θ

(|V0|+ |V1|)

Total 2n|V | 2n|V | 2n|V |

Next, we show that the instance of 3-sat defined by V and θ has a solution iff the instance of
3-pm defined by A,B,C and T has a solution.

(⇒) Let x̂ ∈ {0, 1}V a solution to the instance of 3-sat defined by V and θ.
Hence, for any clause (V0, V1) ∈ θ, we can choose one variable vc ∈ V0 ∪ V1 such that

(vc ∈ V0 ∧ x̂(vc) = 0) ∨ (vc ∈ V1 ∧ x̂(vc) = 1) . (A.11)

Consider any T ′ ⊆ T such that:
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• For any clause index c ∈ [n] and any variable v ∈ V :

(avc , b
v
c , x̄

v
c ) ∈ T ′ ⇔ x̂(v) = 1 (A.12)

(avc+1 mod n, b
v
c , x

v
c ) ∈ T ′ ⇔ x̂(v) = 0 (A.13)

• For any clause index c ∈ [n], the (V0, V1) = θ′c and any variable v ∈ V \ (V0 ∪ V1):

(αvc , β
v
c , x̄

v
c ) ∈ T ′ ⇔ x̂(v) = 0 (A.14)

(αvc , β
v
c , x

v
c ) ∈ T ′ ⇔ x̂(v) = 1 (A.15)

• For any clause index c ∈ [n]:

– For the vc ∈ V0 ∪ V1 chosen in (A.11):

(ac, bc, x̄
vc
c ) ∈ T ′ ⇔ x̂(vc) = 0 (A.16)

(ac, bc, x
vc
c ) ∈ T ′ ⇔ x̂(vc) = 1 (A.17)

– If |V0 ∪ V1| ≥ 2, for precisely one variable v′c ∈ (V0 ∪ V1) \ {vc}:

(αc, βc, x̄
v′c
c ) ∈ T ′ ⇔ x̂(v′c) = 0 (A.18)

(αc, βc, x
v′c
c ) ∈ T ′ ⇔ x̂(v′c) = 1 (A.19)

– If |V0 ∪ V1| = 3, for the remaining variable v′′c ∈ (V0 ∪ V1) \ {vc, v′c}:

(α′c, β
′
c, x̄

v′′c
c ) ∈ T ′ ⇔ x̂(v′′c ) = 0 (A.20)

(α′c, β
′
c, x

v′′c
c ) ∈ T ′ ⇔ x̂(v′′c ) = 1 (A.21)

We show that T ′ is a solution to the instance of 3-pm defined by A,B,C and T , by verifying
that each element of A,B and C occurs in precisely one triple in T ′:

• For any c ∈ [n], the (V0, V1) = θ′c and any v ∈ V :

Element Triple

avc (avc , b
v
c , x̄

v
c ) if x̂(v) = 1

(avc , b
v
c−1 mod n, x

v
c−1 mod n) if x̂(v) = 0

bvc (avc , b
v
c , x̄

v
c ) if x̂(v) = 1

(avc+1 mod n, b
v
c , x

v
c ) if x̂(v) = 0

x̄cv (avc , b
v
c , x̄

v
c ) if x̂(v) = 1

(αvc , β
v
c , x̄

v
c ) if x̂(v) = 0 and v ∈ V \ (V0 ∪ V1)

(ac, bc, x̄
vc
c ) if x̂(v) = 0 and v = vc

(ac, bc, x̄
v′c
c ) if x̂(v) = 0 and |V0 ∪ V1| ≥ 2 and v = v′c

(ac, bc, x̄
v′′c
c ) if x̂(v) = 0 and |V0 ∪ V1| = 3 and v = v′′c

xcv (avc+1 mod n, b
v
c , x

v
c ) if x̂(v) = 0

(αvc , β
v
c , x

v
c ) if x̂(v) = 1 and v ∈ V \ (V0 ∪ V1)

(ac, bc, x
vc
c ) if x̂(v) = 1 and v = vc

(ac, bc, x
v′c
c ) if x̂(v) = 1 and |V0 ∪ V1| ≥ 2 and v = v′c

(ac, bc, x
v′′c
c ) if x̂(v) = 1 and |V0 ∪ V1| = 3 and v = v′′c

• For any c ∈ [n], the (V0, V1) = θ′c and any v ∈ V \ (V0 ∪ V1):
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Element Triple

αvc (αvc , β
v
c , x̄

v
c ) if x̂(v) = 0

(αvc , β
v
c , x

v
c ) if x̂(v) = 1

βvc (αvc , β
v
c , x̄

v
c ) if x̂(v) = 0

(αvc , β
v
c , x

v
c ) if x̂(v) = 1

• For any c ∈ [n]:

Element Triple

ac (ac, bc, x̄
vc
c ) if x̂(vc) = 0

(ac, bc, x
vc
c ) if x̂(vc) = 1

bc (ac, bc, x̄
vc
c ) if x̂(vc) = 0

(ac, bc, x
vc
c ) if x̂(vc) = 1

• For any c ∈ [n] with (V0, V1) = θ′c such that |V0 ∪ V1| ≥ 2:

Element Triple

αc (αc, βc, x̄
v′c
c ) if x̂(v′c) = 0

(αc, βc, x
v′c
c ) if x̂(v′c) = 1

βc (αc, βc, x̄
v′c
c ) if x̂(v′c) = 0

(αc, βc, x
v′c
c ) if x̂(v′c) = 1

• For any c ∈ [n] with (V0, V1) = θ′c such that |V0 ∪ V1| = 3:

Element Triple

α′c (α′c, β
′
c, x̄

v′′c
c ) if x̂(v′′c ) = 0

(α′c, β
′
c, x

v′′c
c ) if x̂(v′′c ) = 1

β′c (α′c, β
′
c, x̄

v′′c
c ) if x̂(v′′c ) = 0

(α′c, β
′
c, x

v′′c
c ) if x̂(v′′c ) = 1

(⇐) Let T ′ ⊆ T be any solution to the instance of 3-pm defined by A,B,C and T .
Moreover, let x̂ ∈ {0, 1}V such that

∀v ∈ V : x̂v =

{
1 if (av0, b

v
0, x̄

v
0) ∈ T ′

0 otherwise
. (A.22)

We show that x̂ is a solution to the instance of 3-sat defined by V and θ:
To begin with, we observe the clause index 0 in (A.22) being an arbitrary choice, because, for

any clause index c ∈ [n], we have by construction of T :

(avc , b
v
c , x̄

v
c ) ∈ T ′

⇒ (avc+1 mod n, b
v
c , x

v
c ) /∈ T ′ (A.23)

⇒ (avc+1 mod n, b
v
c+1 mod n, x̄

v
c+1 mod n) ∈ T ′ (A.24)

By induction, we conclude for any clause index c ∈ [n]:

(avc , b
v
c , x̄

v
c ) ∈ T ′ ⇔ (av0, b

v
0, x̄

v
0) ∈ T ′ (A.25)

For any clause index c ∈ [n] and the (V0, V1) = θ′c, there exists a triple in T ′ that contains ac
(because T ′ is a solution to the instance of 3-pm).
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Thus, and by construction of T , there exists a v ∈ V such that one of the following statements
holds:

v ∈ V0 ∧ (ac, bc, x̄
v
c ) ∈ T ′ (A.26)

v ∈ V1 ∧ (ac, bc, x
v
c ) ∈ T ′ (A.27)

We consider the two cases separately:

• If v ∈ V0, we have

(ac, bc, x̄
v
c ) ∈ T ′

⇒ (avc , b
v
c , x̄

v
c ) /∈ T ′ (A.28)

⇒ (av0, b
v
0, x̄

v
0) /∈ T ′ by (A.25) (A.29)

⇒ x̂(v) = 0 . (A.30)

The clause indexed by c and defined by (V0, V1) is satisfied because v ∈ V0 and x̂(v) = 0.

• If v ∈ V0, we have

(ac, bc, x
v
c ) ∈ T ′

⇒ (avc+1 mod n, b
v
c , x

v
c ) /∈ T ′ (A.31)

⇒ (avc , b
v
c , x̄

v
c ) ∈ T ′ (A.32)

⇒ (av0, b
v
0, x̄

v
0) ∈ T ′ by (A.25) (A.33)

⇒ x̂(v) = 1 . (A.34)

The clause indexed by c and defined by (V0, V1) is satisfied because v ∈ V1 and x̂(v) = 1.

Exercise 8 Follow the proof of Theorem 5 in order to:
(a) construct the instance of 3-pm for the instance of 3-sat given by the 3-CNF (x1 ∨ (1−

x2) ∨ x3) · ((1− x1) ∨ x2 ∨ x4).
(b) construct, for any solution to this instance of 3-sat, the solution to the instance of 3-pm.

Lemma 13 3-pm is np-complete.

Proof 3-pm ∈ np, as solutions can be verified efficiently.
3-pm is np-hard, by Theorem 5 and Lemma 11.

A.3 Packing

Lemma 14 For any finite set S and any ∅ /∈ Σ ⊆ 2S, we have∣∣∣∣∣ ⋃
U∈Σ

U

∣∣∣∣∣ ≤∑
U∈Σ

|U | . (A.35)

Proof For |Σ| = 0, the statement is obviously correct.
For |Σ| > 0, there exists a V ∈ Σ and∣∣∣∣∣ ⋃

U∈Σ

U

∣∣∣∣∣ =

∣∣∣∣∣∣V ∪
⋃

U∈Σ\{V }

U

∣∣∣∣∣∣ = |V |+

∣∣∣∣∣∣
⋃

U∈Σ\{V }

U

∣∣∣∣∣∣−
∣∣∣∣∣∣V ∩

⋃
U∈Σ\{V }

U

∣∣∣∣∣∣
≤ |V |+

∣∣∣∣∣∣
⋃

U∈Σ\{V }

U

∣∣∣∣∣∣
≤ |V |+

∑
U∈Σ\{V }

|U | by induction

=
∑
U∈Σ

|U | .
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Definition 24 For any finite set S and any ∅ /∈ Σ ⊆ 2S , the set Σ is called a packing of S iff the
elements of Σ are pairwise disjoint, i.e.:

∀{U,U ′} ∈
(
S
2

)
: U ∩ U ′ = ∅ . (A.36)

Lemma 15 For any finite set S and any ∅ /∈ Σ ⊆ 2S, the set Σ is a packing of S iff∣∣∣∣∣ ⋃
U∈Σ

U

∣∣∣∣∣ =
∑
U∈Σ

|U | . (A.37)

Proof (⇒) For |Σ| = 0, the statement (A.37) is obviously correct.
For |Σ| > 0, there exists a V ∈ Σ and∣∣∣∣∣ ⋃

U∈Σ

U

∣∣∣∣∣ =

∣∣∣∣∣∣V ∪
⋃

U∈Σ\{V }

U

∣∣∣∣∣∣ = |V |+

∣∣∣∣∣∣
⋃

U∈Σ\{V }

U

∣∣∣∣∣∣−
∣∣∣∣∣∣V ∩

⋃
U∈Σ\{V }

U

∣∣∣∣∣∣
= |V |+

∣∣∣∣∣∣
⋃

U∈Σ\{V }

U

∣∣∣∣∣∣−
∣∣∣∣∣∣∣
⋃

U∈Σ\{V }

(V ∩ U)︸ ︷︷ ︸
∅

∣∣∣∣∣∣∣
= |V |+

∣∣∣∣∣∣
⋃

U∈Σ\{V }

U

∣∣∣∣∣∣ by (A.36)

= |V |+
∑

U∈Σ\{V }

|U | by induction

=
∑
U∈Σ

|U |

(⇐) For |Σ| = 0, the statement (A.37) is obviously correct.
For |Σ| > 0 and any V ∈ Σ:∣∣∣∣∣ ⋃

U∈Σ

U

∣∣∣∣∣ =

∣∣∣∣∣∣V ∪
⋃

U∈Σ\{V }

U

∣∣∣∣∣∣
= |V |+

∣∣∣∣∣∣
⋃

U∈Σ\{V }

U

∣∣∣∣∣∣−
∣∣∣∣∣∣V ∩

⋃
U∈Σ\{V }

U

∣∣∣∣∣∣
= |V |+

∣∣∣∣∣∣
⋃

U∈Σ\{V }

U

∣∣∣∣∣∣−
∣∣∣∣∣∣
⋃

U∈Σ\{V }

(V ∩ U)

∣∣∣∣∣∣
Therefore:∣∣∣∣∣∣

⋃
U∈Σ\{V }

(V ∩ U)

∣∣∣∣∣∣ = |V |+

∣∣∣∣∣∣
⋃

U∈Σ\{V }

U

∣∣∣∣∣∣−
∣∣∣∣∣ ⋃
U∈Σ

U

∣∣∣∣∣
≤ |V |+

∑
U∈Σ\{V }

|U | −

∣∣∣∣∣ ⋃
U∈Σ

U

∣∣∣∣∣ by Lemma 14

=
∑
U∈Σ

|U | −

∣∣∣∣∣ ⋃
U∈Σ

U

∣∣∣∣∣
=
∑
U∈Σ

|U | −
∑
U∈Σ

|U | by (A.37)

= 0
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Thus:

∀U, V ∈
(

Σ
2

)
: U ∩ V = ∅

A.4 Covering

Definition 25 For any set S and any ∅ /∈ Σ ⊆ 2S , the set Σ is called a cover of S iff⋃
U∈Σ

U = S . (A.38)

A cover Σ of S is called exact (and a partition of S) iff it is also a packing of S, i.e., if the
elements of Σ are pairwise disjoint, i.e.:

∀U,U ′ ∈
(

Σ
2

)
: U ∩ U ′ = ∅ (A.39)

Definition 26 Let S be any set, and let ∅ /∈ Σ ⊆ 2S .

Deciding whether there exists a Σ′ ⊆ Σ such that Σ′ is an exact cover of S is called the instance
of the exact cover problem (ec) with respect to S and Σ.

Additionally, if |S| is an integer multiple of three and any U ∈ Σ is such that |U | = 3, the
instance of ec with respect to S and Σ is also called the instance of the exact cover by 3-sets
problem (ec-3) with respect to S and Σ.

Lemma 16 3-pm ≤p ec-3

Proof Consider any instance of 3-pm defined by A,B,C and T . Without loss of generality,
assume that A,B,C are pairwise disjoint.

Now, consider the instance of ec-3 defined by

S = A ∪B ∪ C (A.40)

Σ = {{a, b, c} ⊆ S | (a, b, c) ∈ T} (A.41)

Firstly, |S| is an integer multiple of three, as |A| = |B| = |C|.
Secondly, every U ∈ Σ is such that |U | = 3, by construction.

Thirdly, Σ′ ⊆ Σ is an exact cover of S iff the triples defined uniquely by the elements of Σ′ are
a perfect 3-dimensional matching of A×B × C, by construction.

Lemma 17 ec-3 is np-complete.

Proof ec-3 ∈ np, as solutions can be verified efficiently.

ec-3 is np-hard, by Lemmata 13 and 16.

Lemma 18 ec is np-complete.

Proof ec ∈ np, as solutions can be verified efficiently.

ec is np-hard, as ec-3 is np-hard and ec-3 ⊆ ec.

Definition 27 For any k ∈ N, deciding whether there exists a Σ′ ⊆ Σ such that (i) Σ′ is a cover
of S and (ii) |Σ′| ≤ k is called the instance of the set cover problem ( set-cover) with respect to
S, Σ and k.

Lemma 19 ec-3 ≤ set-cover
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Proof For any instance (S,Σ) of ec-3, let m ∈ N such that |S| = 3m.
Consider the instance of set-cover defined by (S,Σ,m).
We show for any Σ′ ⊆ Σ: Σ′ solves the instance of ec-3 iff Σ′ solves the instance of set-cover.
(⇒) If Σ′ is a solution to the instance of ec-3, we have |Σ′| ≤ m because

3m = |S| (A.38)
=

∣∣∣∣∣ ⋃
U∈Σ′

U

∣∣∣∣∣ (A.39) and Lemma 15
=

∑
U∈Σ′

|U | =
∑
U∈Σ′

3 = 3|Σ′| .

(⇐) If Σ′ is a solution to the instance of set-cover, we have∣∣∣∣∣ ⋃
U∈Σ′

U

∣∣∣∣∣ =
∑
U∈Σ′

|U |

because

3m = |S| (A.38)
=

∣∣∣∣∣ ∑
U∈Σ′

U

∣∣∣∣∣ Lemma 14
≤

∑
U∈Σ′

|U | =
∑
U∈Σ′

3 = 3|Σ′|
|Σ′|≤m
≤ 3m .

Thus, Σ′ is a packing of S, by Lemma 15.
Hence, Σ′ is a solution to the instance of ec-3.

A.5 Coloring

Definition 28 Let G = (V,E) be any graph.
For any m ∈ N and any c : V → E, the map c is called an m-coloring of G iff ∀{v, w} ∈

E : c(v) 6= c(w). G is called m-colorable iff there exists an m-coloring of G.
G is called m-chromatic, and m is called the chromatic number of G, iff m is the minimal

natural number such that G is m-colorable.

Definition 29 For any graph G = (V,E) and any m ∈ N, deciding whether G is m-colorable is
called the instance of the m coloring problem (m-coloring) with respect to G and m.

Theorem 6 (Karp (1972)) 3-sat ≤p 3-coloring

Proof Given any instance of 3-sat, we define a graph G = (V,E) as follows:

• Let V contain a complete subgraph of three special nodes labeled 0, 1 and N . This subgraph
is commonly called a palette.

0 1

N

• For every variable xj in the given instance of 3-sat, let V contain two nodes labeled xj and
x̄j , respectively. Let both these nodes be connected to the palette node labeled N . Moreover,
let the nodes labeled xj and x̄j be connected by an edge:

N

x̄j xj
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• For any clause (l1 ∨ l2 ∨ l3) = χ in the given instance of 3-sat, let V contain the following
subgraph in which lj denotes the node labeled xk iff lj = xk, and lj denotes the node labeled
x̄k iff lj = 1− xk:

l1

l2

l3

aχ

bχ

cχ

dχ

eχ

fχ

0 1

N

Observe that the size of G is polynomially bounded by the size of the given instance of 3-sat.

Exercise 9 Complete the proof sketched above by showing that the instance of 3-sat has a solution
iff (!) G is 3-colorable.

Lemma 20 (Karp (1972)) 3-coloring is np-complete.

Proof 3-coloring ∈ np, as solutions can be verified efficiently.
3-coloring is np-hard by Lemma 11 and Theorem 6.

Lemma 21 m-coloring is np-complete.

Proof m-coloring ∈ np, as solutions can be verified efficiently.
m-coloring is np-hard, as 3-coloring is np-hard and 3-coloring ⊆ m-coloring.
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