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Probability space

is a three-tuple (£, g, P) with:

* () - the set of elementary events

* 0 - algebra |
P - probability measure

o-algebra over () is a system of subsets,
i.e.o © P(Q) (P isthe power set) with:

(€O
cA€c > Q\AEo
'AiEO'izl...Tl = U?=1Ai60

o is closed with respect to the complement and countable
conjunction. It follows: @ € o, o is closed also with respect to the
countable disjunction (due to the De Morgan's laws)
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Probability space

Examples:
e g = {0, Q} (smallest) and ¢ = P(Q) (largest) o-algebras over ()

* the minimal o-algebra over () containing a particular subset A € ()
isoc={0,4,Q0\ A4, 0Q}

() is discrete and finite, ¢ = 2%

() = R, the Borel-algebra (contains all intervals among others)

* etc.
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Probability measure

P:o — [0,1] is a ,measure” (I1) with the normalization P(Q)) = 1

o-additivity: let A; € o be pairwise disjoint subsets, i.e. 4; N 4;» = @,

then
P (U Al-) = 2 P(A)

Note: there are sets for which there is no measure.

Examples: the set of irrational numbers, function spaces R™ etc.

Banach-Tarski paradoxon (see Wikipedia ©):

rﬂ\r 1 ‘”1
5 ey
o
\‘

03/03/2020 Machine Learning | : Probability Theory 4



(For us) practically relevant cases

The set Q is ,good-natured”, e.g. R", discrete finite sets etc.

o = P(Q), i.e. the algebra is the power set

We often consider a (composite) ,event® A € () as the union of
elemantary ones

Probability of an event is

P(A) = 2 P(w)

wWEA
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Random variables

Here a special case — real-valued random variables.

A random variable ¢ for a probability space (£}, g, P) is a mapping
¢: Q) - R, satisfying

{w:é(w)<r}eoc VreR
(always holds for power sets)

Note: elementary events are not numbers — they are elements of a
general set ()

Random variables are in contrast numbers, i.e. they can be summed
up, subtracted, squared etc.
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Distributions

Cummulative distribution function of a random variable ¢ :
Fe(r) = P(lw: §(w) <1})
Probability distribution of a discrete random variable ¢é: Q) — 7Z:

pe(r) = P({w:$(w) =1})

Probability density of a continuous random variable é: Q) - R :

6F€ (T‘)
ar

pe(r) =
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Distributions

Why is it necessary to do it so complex (through the cummulative
distribution function)?

Example —a Gaussian
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Probability of any particular real value is zero — a ,,direct” definition
of a ,,probability distribution” is senseless ®

It is indeed possible through the cummulative distribution function.
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Mean

A mean (expectation, average ... ) of a random variable ¢ is

Ep(§) = ) P(@)-§@)=) > P@)r=) p)-r

WEN r w:é(w)=r

Arithmetic mean is a special case:

n

1

SORTHITCE
=1 T

x =1 and pg(r) :%

with

(uniform probability distribution).
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Mean

The probability of an event A € () can be expressed as the mean
value of a corresponding ,indicator“-variable

P(A) = ) Pw)= ) Pw) {w)

WEA wWEN)

€(a))={1 if w€A

0 otherwise

with

Often, the set of elementary events can be associated with a
random variable (just enumerate all w € Q).

Then one can speak about a “probability distribution over (0“
(instead of the probability measure).
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Example 1 — numbers of a die

The set of elementary events: Q={ab,cd,e,f}
Probability measure: P({a}) = %,P({c, b= %
Random variable (number of a die): E(a) =1,6(b)=2..8(f) =6
Cummulative distribution: Fe(3) = %,F§(4.5) = %
Probability distribution: p:(1) = pe(2) ...ps (6) = %
Mean value: Ep(é) = 3.5
Another random variable (squared number of a die)
&'@=1¢&Mb)=4..8'(f) =36

Mean value: Ep(&) = 15%
Note: Ep(&") # E4(§)
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Example 2 — two independent dice numbers

The set of elementary events (6x6 faces):

Q={ab,cde f}*x{ab,cd,e,f}
Probability measure: P({ab}) = 3—16,P({cd,fa}) = 118
Two random variables:
1) The number of the first die: &;(ab) = 1,&,(ac) = 1,&(ef) =5 ...

2) The number of the second die: &, (ab) = 2,¢é,(ac) = 3,&,(ef) =6 ...

Probability distributions:

1
pe, (1) = pg,(2) = - = pg, (6) = -

| =

P, (1) = pg,(2) = - =pg,(6) =
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Example 2 — two independent dice numbers

Consider the new random variable: { = &; + &,

The probability distribution p¢ is not uniform anymore ©

pr ¢ (1,2,3,456,54321) ¢ 7 5 5 vl
S R 6_440‘14
e bial e 9| et
Mean value is Ep(§) =7 e wEaraE
> LA i Sx{’(? 8
gaEt e 2
In general for mean values: a5 |

Ep(§1+82) = ) P(@) - (61(@) + £(@)) = Ep(§) + Ep(§2)

wWE
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Independence

Two events A € 0 and B € o are independent, if

P(ANB) = P(4) - P(B)

Interesting: Events A and B = Q \ B are independent, if A and B are
independent ©

Two random variables are independent, if
Fezr6 (1, 8) = Fe () - F,(s) V1,5

It follows (example for continuous ¢):

0°Fg(r, s) _ dFg (1) | dFg,(s)
drads ar ds

pe(r,s) = = pg, (1) - pe, (5)
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Conditional probabilities

Conditional probability:

P(ANB)

P(A|B) = PE) |

Independence (almost equivalent): A and B are independent, if
P(A|B) =P(A) and/or P(B|A)=P(B)

Bayes’ Theorem (formula, rule)

P(B | A) - P(A)
P(B)

P(A|B) =
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Random variables of higher dimension

Analogously: Let £: Q — R™ be a mapping (n = 2 for simplicity), with & =
(£1,¢2), 6: 2> Rand &: Q> R

Cummulative distribution function:
Fe(r,s) = P({w: & (w) < r}n{w: & (w) < s})
Joint probability distribution (discrete):

P€=(§1§2)(7’; s) = P({w:&(w) =r}n{w:&(w) = s})

Joint probability density (continuous):

0°Fg(r, s)
Pe=(5,,6,) (1) S) =
§=(£1.$2 ! 0r 0s
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